BIBLIOGRAPHY LASUNA, JONALYN C. APRIL 2006. ...
BIBLIOGRAPHY
LASUNA, JONALYN C. APRIL 2006. Growth and Yield Response of Spoon
Cabbage (Brassica chinensis L.) to Planting Distance. Benguet State University, La
Trinidad, Benguet.
Adviser: Pepe E. Toledo, PhD
ABSTRACT

This study was conducted at Lamut, Tawang, La Trinidad, Benguet from
November to December 2005 to determine the effect of planting distance on the growth
and yield and establish the best planting distance for spoon cabbage production.

Results revealed that during the first week after transplanting, leaf length was not
significantly affected by the various spacings evaluated. However, from the second to
the fourth week, wider spacings significantly increased leaf length.

Concerning average weight per bunch, planting distance of 20 cm x 20 cm and 30
cm x 30 cm considerably increased it over 10 cm x 10 cm, 15 cm x 15 cm and 25 cm x 25
cm. The non-marketable yield were not significantly affected by the different plant
spacings use but spacings of 10 cm x 10 cm and 15cm x 15 cm markedly increased
marketable yield.

In terms of the total and computed yields and their benefit:cost ratio (BCR)
obtained from the various spacing treatments used, it was apparent that spacings at 10 cm
x 10 cm and 15cm x 15cm significantly increased total and computed yields than wider
spacings but had lower BCRs. The highest BCR computed was at 20 cm x 20 cm with
4.23.

TABLE OF CONTENTS
Page
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ii

INTRODUCTION . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
REVIEW OF LITERATURE

The Crop as a Vegetable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3

Importance and Effect of Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
MATERIALS AND METHODS

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
RESULTS AND DISCUSSION

Leaf Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9

Average Weight, Non-marketable and Marketable Yield . . . . . . . . . . .
9

Total and Computed Yield and Benefit:Cost Ratio . . . . . . . . . . . . . . . .
10
SUMMARY, CONCLUSION AND RECOMMENDATION

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15

Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
LITERATURE CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19
ii


INTRODUCTION

Spoon cabbage (Brassica chinensis L.) is a vegetable crop typically grown in Benguet.
It is considered as a vegetable that can provide nutrition to human, sometimes preceded by other
names such as Pak Choi, Bok-Choi, Taisai, and celery mustard. As compared to Chinese
cabbage, the leaves are shorter, more loose and spoon-like and named after it but this crop is not
widely known in Benguet and Mountain Province, although it is one of the most nutritious green
leafy vegetables (Kinoshita, 1972). It contains fiber and essential nutrients such as calcium,
phosphorus and vitamin C. Besides its nutritional value, this crop is also profitable due to its
rapid growth and early maturity. Spoon cabbage is succulent and mild in flavor, and maybe
eaten either cooked or raw. This crop grows best at cool temperature of 15-200C (McDonald,
1993).

It is believed that high yield and normal growth can be obtained from spoon cabbage if
proper cultural practices such as proper planting and proper spacings are observed. Plant spacing
affects plant growth and development due to competition for light, nutrient elements, soil
moisture, air, and space (Bautista and Mabesa, 1977).

Determining the distance of planting in every crop minimizes waste of expensive seeds
per unit area increasing the yield with higher profit (Compay, 1995). Determining the
appropriate spacing requirement to ensure an effective vigorous plant growth and good yield is
important. Spacing is a practical way of preventing crops from competing with each other in the
absorption of nutrients and utilization of light, which also provides the crop for full development
of head. In addition, proper spacing prevents rotting and avoid overcrowding of the plant
(Bilango, 1996).

This study was conducted at Lamut, Tawang, La Trinidad, Benguet from November to

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

December 2005 to determine the effect of planting distance on the growth and yield and establish
the best planting distance for spoon cabbage production.



Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

REVIEW OF LITERATURE
The Crop as a Vegetable

Spoon cabbage is a leafy vegetable grown in all parts of the world and has been used as
food since antiquity although it is not well popular in the Philippines (Tamayo, 1975).

Lomiwes (2004) said that this crop is also used to flavor other dishes due to its good
strong taste. Nutritionally, it is a good source of vitamins and minerals.

Importance and Effect of Spacing

Spacing is important especially on the growth of the plant. Bautista and Mabesa (1977)
mentioned that as the plant population per unit increases, the yield per unit area also increases
until the spacing is so close that excessive competition between adjacent plants reduced the
yield. Plants with wider spacing can get more light, minerals and nutrients but closer spacings
led to great competition for these growth factors (Cortez, 1978).

In addition, Gardner (1951) said that another method of adjustment to a limited water
supply is through wider spacing. The principal factor of course in determining how far apart to
seed or set plants is the size that they normally attain under the conditions in question.
Relatively wider spacings may be necessitated either by the limited supply of an infertile soil or
by rank growth where the soil is rich. Second importance only to natural habit of growth,
however, is moisture supply. Roots of most crop plants will reach wide and deep for moisture
and consequently under conditions of limited water supply they can be widely spaced with the
assurance that with such spacing they will obtain what is available and use it to better advantage
that if planted closely.


Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006


However, Watts (1972) reported that close planting is conducive to small heads which are
preferred by consumers. If sold by the head, and if the heads are large enough to meet market
requirements, a maximum number to the acre will of course secure largest returns. Close
planting, however prohibits cultivation late in the season, which is very important in dry weather.
It may also prevent the use of power sprayer and of carts when harvesting the crop. Yield by
weights are larger when spacing or distance are medium rather than close. The larger when
spacing or distance are medium rather than close. The most approved plan is to plant rather
close in the row and allow a liberal space between rows. Some of the most successful growers
prefer planting in check rows because of advantages in cultivating land because less hoeing is
required than in the usual method.

Furthermore, the idea of McDonald (1993) also said that plant spacing in planting design
that allow enough space between plants so that they have room to develop to their full size, if
planted too closely, they may soon used to be thinned to avoid becoming over crowded. There
may be occasions, however, when close planting can be employed to provide a particular design
feature, such as a knat garden. Planting distance and spacing also depend upon the soil climatic
conditions, and the time that the species or cultivar takes to mature while the flower bed is
developing. Young plants are less costly than more mature specimens, but their impact is less
immediate, and there maybe a delay of several years before the planting begins to look mature.
The decision or whether to use young or mature plants will depend on the budget. As a general
rule, close planting and the use of fast maturing plants creates a good short-term impact, but
more thinning, maintenance and renewal is required in the longer term.


Moreover, Uichanco (1959) as cited by Alos (1996), mentioned that plant spacing affects

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

root formation and root crops should be planted closer. In contrast, Mendoza (1966) wrote that
beans planted tend to grow tall at closer spacing and produce more leaves at wider spacing. As
reported by Bonner and Galston (1959), plants in wide spacing are smaller due to mutual
shading, exhaustion of water supply and depletion of mineral nutrients. Sawat (1976) also said
that when plant population markedly increased per unit area, a point is reached at which plant
begins to compete for certain essential factors such as light, nutrients and water.

The idea of Compay (1995) stated that the distance between the plants depends upon the
size of the plant and the time they are to remain in the new location before setting. However, a
minimum of 20 cm x 20 cm had been found satisfactory for tomato and pepper. It is preferable
to give the plant 25% more space in the plot when the condition do not favor field setting,
especially when the plants may have to be held three or more weeks longer than usual as may
happen during wet season.



Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

MATERIALS AND METHODS
Materials

The important materials used were spoon cabbage seeds (‘Pak Choi Green’), chicken
manure, complete fertilizer, garden tools, knife and identifying tags.

Methods

Experimental design and treatment. This experiment was laid in a randomized complete
block design (RCBD) with four replications. The treatments were as follows:

Code

Plant Spacing

S1


10 cm x 10 cm

S2


15 cm x 15 cm

S3


20 cm x 20 cm

S4


25 cm x 25 cm

S5


30 cm x 30 cm (Farmer’s practice)

Raising of seedlings. A plot measuring 1 m x 10 m was thoroughly prepared. Furrows
across the plot were made for seed sowing and covered thinly with soil followed by watering.

Land preparation and fertilizer application. An area of 100 m2 was thoroughly prepared
and divided into four blocks and each block was further subdivided into five experimental plots
with a dimension of 1 m x 5 m. These plots were leveled and holes were made in accordance
with the specified treatments. Chicken manure (one handful) and complete fertilizer (100-100-
100 kg N-P205-K20/ha) were applied in the prepared holes and mixed thoroughly with the soil.

Transplanting. The 3-week old seedlings were transplanted in the holes followed
immediately by watering. Any dead seedling was immediately replaced one week after
transplanting.

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006


Care and management. Other cultural management practices such as pests control,
weeding, hilling-up, and irrigation were done uniformly to ensure optimum growth and
development of the plants.

Harvesting. All plants were hand harvested using a sharp knife at the marketable stage.

Data gathered. The data gathered were subjected to variance of analysis and mean
separation test by Duncan’s multiple range test (DMRT) were as follows:

1. Leaf length (cm/leaf). This was obtained from 10 sample plants by measuring from
the base of the petiole to the tip of the longest leaf at weekly intervals until harvest.

2. Yield. The yield were assessed as follows:

a. Average weight (g/bunch). This was computed using the formula:

Weight (g/bunch) = Total yield (kg/plot) ) Total number of harvested plants/plot

b. Marketable bunch (kg/plot). All bunches without defects were weighed at
harvest.

c. Non-marketable bunch (kg/plot). All bunches with defects were weighed at
harvest.

d. Total yield (kg/plot). This was the weights of marketable and non-marketable
bunches per plot.

e. Computed yield (t/ha). The marketable yield per plot was converted to
tons/hectare using the formula:


Yield (t/ha) = Yield (kg/5m2) x 2


where: 2 was a factor used to convert kg/5m2 to t/ha.

3. Benefit:cost ratio (BCR). This was obtained by recording the man-days/ha in
transplanting and seedling costs and BCR was computed by using the formula:

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006


BCR = Benefit-Cost ) Cost + 1

4. Others. Documentation of the study in pictures.



Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

RESULTS AND DISCUSSION
Leaf Length

Table 1 shows the weekly leaf length after transplanting. During the first week, statistical
analysis showed no significant differences observed among the various spacing treatments
evaluated. However, the second to the fourth week, wider spacings significantly increased leaf
length compared to the 10 cm x 10 cm spacing. Nonetheless, the other spacings were
comparable with each other.

Average Weight, Non-marketable
and Marketable Yield

The average weight, non-marketable and marketable yield harvested are shown in Table
2. Concerning average weight per bunch, 20 x 20 and 30 cm x 30 cm considerably increased it
over 10 x 10, 15 x 15 and 25 x 25 cm. The non-marketable yield were not

Table 1. Weekly leaf length (cm)

44444444444444444444444444444444444444444444444444444444444444
PLANTING






WEEK






))))))))))))))))))))))))))))))))
DISTANCE (cm)



1

2

3
4
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
10 x 10




10.14a
17.74b 21.94b

23.99b

15 x 15




11.99a
19.89a
23.73a 25.91a

20 x 20




11.57a
19.32a

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

23.63a 26.27a

25 x 25




10.55a

19.87a
23.09a 25.76a

30 x 30 (Farmer’s pactice)


10.96a

19.17a
23.56a 25.40a
44444444444444444444444444444444444444444444444444444444444444
In a column, means with a common letter are not significantly different at 5% level by DMRT

Table 2. Average weight, non-marketable and marketable yield

44444444444444444444444444444444444444444444444444444444444444
PLANTING



AVERAGE

WEIGHT (kg/plot)







)))))))))))))))))))))))
DISTANCE (cm)


(g/bunch)
Non-marketable
Marketable
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
10 x 10




59.66d
2.68a

7.14a

15 x 15




120.24c


2.60a

7.45a

20 x 20




158.85a


1.10a

5.30b

25 x 25




139.09b


1.99a

4.64bc

30 x 30 (Farmer’s practice)

149.69a

1.88a

4.12c

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

44444444444444444444444444444444444444444444444444444444444444
In a column, means with a common letter are not significantly different at 5% level by DMRT


significantly affected by the spacings tested but spacings of 10 x 10 and 15 x 15 cm markedly
increased marketable yield, though, comparable with each other.

Total and Computed Yield
and Benefit:Cost Ratio

Table 3 shows the total and computed yield and the benefit:cost ratio (BCR) obtained
from the various spacing treatments used. It is apparent that spacings at 10 x 10 and 15 cm x 15
cm significantly increased total and computed yield than wider spacings but had lower BCRs.
The highest BCR computed was at 20 cm x 20 cm.

Plate 1 shows the overview of experiment while Plate shows the harvested bunches from
the various planting distance.

The insignificant result obtained on leaf length (Table 1) one week after transplanting
might be attributed to slow root establishment of the newly transplanted seedlings resulting to the
lesser absorption of the applied fertilizer. However, two weeks after transplanting and Table 3.
Total and computed yield and benefit:cost ratio (BCR)

44444444444444444444444444444444444444444444444444444444444444
PLANTING



TOTAL
YIELD
COMPUTED
YIELDBCR
DISTANCE (cm)


(kg/plot)


(t/ha)
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
10 x 10




9.81a

19.63a

1.62

15 x 15





Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

10.10a

20.20a

3.41

20 x 20




7.40b

14.80b

4.23

25 x 25




6.09c

12.17c

4.09

30 x 30 (Farmer’s practice)


5.99c

11.98c

4.03
44444444444444444444444444444444444444444444444444444444444444
In a column, means with a common letter are not significantly different at 5% level by DMRT


on-wards, the roots were already well established and that competition for nutrients and shading
effect had set-in for the closest spacing resulting to slower growth with shorter leaf length. This
finding support with the statement of Bonner and Galston (1954) as cited by Bacdayan (1996)
that plants grown in crowded condition are smaller than plants with wider spacings but
contradicted the finding of Mendoza (1966) that closer spacing enhance growth resulting to
taller plants. In terms of average weight per bunch (Table 2), the lower weight at closer spacings
(10 x 10 and 15 cm x 15 cm) could be attributed to the higher populationof the plants. However,
this high population resulted to higher marketable, total and computed yields (Table 3). This
findings supports the statement of Bautista and Mabesa (1975) that as plant population per unit
area also increases until the spacing is so close that excessive competition between adjacent
plants reduce the yield per plant. It is also the same with the idea of Burton (1966) as cited by

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Dampilag (1998) that if spacing is too wide, the yield/ha may also be less despite the increases in
weight of individual plants. Concerning benefit:cost ratio, the lower return could be attributed to
higher labor and seedling costs than at wider spacings.

These results obtained in this study confirmed the findings of Candido (2004) that plants
spaced at 20 cm x 20 cm and 25 cm x 25 cm of mint significantly produced higher marketable,
total and computed sprig yields due to higher population compared to plants grown with wider
spacing while it is the same with the findings of Degala (2003) that 20 cm x 20 cm markedly
increased marketable and computed yield vis-a-vis to 30 cm x 30 cm and 40 cm x 40 cm planting
distance in sweet basil. While Falolo (2003) also found that plants spaced 20 cm x 20 cm and 25
cm x 25 cm on ‘Florence’ fennel considerably increased marketable yield. However, for the
total and computed yield of ‘Florence’ fennel spaced at 15 cm x 15 cm and 20 cm x 20 cm are
significantly higher as compared to those with wider spacing, although comparable with each
other.








Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006


SUMMARY, CONCLUSION AND RECOMMENDATION
Summary

This study was conducted at Lamut, Tawang, La Trinidad, Benguet from November to
December 2005 to determine the effect of planting distance on the growth and yield and establish
the best planting distance for spoon cabbage production.

Results revealed that during the first week after transplanting, leaf length was not
significant on the various spacing treatments evaluated. However, the second to the fourth week,
wider spacings significantly increased leaf length compared to the 10 cm x 10 cm spacing.
Nonetheless, the other spacings were comparable with each other.

Concerning average weight per bunch, 20 x 20 and 30 cm x 30 cm considerably increased
it over 10 x 10, 15 x 15 and 25 x 25 cm. The non-marketable yield were not significantly
affected by the spacings tested but spacings of 10 x 10 and 15 x 15 cm markedly increased
marketable yield, though, comparable with each other.

In terms of the total and computed yield and the benefit:cost ratio (BCR) obtained from
the various spacing treatments used, it was apparent that spacings at 10 x 10 and 15 cm x 15 cm
significantly increased total and computed yield than wider spacings but had lower BCRs. The
highest BCR computed was at 20 cm x 20 cm.

Conclusion

Based on the results obtained, 10 x 10 and 15 x 15 cm spacings increased yield but had
lower benefit:cost ratio. The highest BCR computed was at 20 cm x 20 cm.


Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006



Recommendation

From the preceeding results and discussion, it is therefore recommended that either 15 cm
x 15 cm or 20 cm x 20 cm could be used as plant spacing for spoon cabbage production. It is
further recommended that the same study and crop be evaluated during rainy season cropping to
verify the results obtained in this study.



Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006


LITERATURE CITED
ALOS, J.N. 1996. Growth and yield of mustard ‘Taiping Po’ as affected by plant spacing.

BS Thesis. BSU, La Trinidad, Benguet. P. 6.

BILANGO, J.G. 1996. Effect of spacing on the growth and yield of lettuce cv. Great Lakes

54. BS Thesis. BSU, La Trinidad, Benguet. Pp. 1-2.

BACDAYAN, E.D. 1996. Sequence of seed development and seed production of pechay

(Brassica napus var. chinensis) cv. Black Behi as affected by planting distance.
BS Thesis. BSU, La Trinidad, Benguet. P. 14.

BAUTISTA, O.K. and R.C. MABESA. 1977. Vegetable Production. UPLB, College, Los

Baños, Laguna. P. 63.

BONNER, W. and A.W. GALSTON. 1959. Principles of Plant Physiology. San Francisco:
W.H. Freeman Co. Pp. 477-488.

BURTON, W.H. 1966. The Potato. Wageningen, The Netherlands: H. Veeman and Zamen

Book Co. Pp. 131-132.

CANDIDO, J.A. 2004. Growth and yield performance of mint (Mentha spicata) as

influenced by planting distance. BS Thesis. BSU, La Trinidad, Benguet. Pp. 9-
12.

COMPAY, D.F. 1995. Effect of planting distance on the growth and yield of tomato. BS

Thesis. BSU, La Trinidad, Benguet. Pp. 3-4.

CORTEZ, L.C. 1978. Effect of distance planting on the growth and yield of lettuce. BS Thesis.
MSAC, La Trinidad, Benguet. P. 14.

DAMPILAG, H.B. 1998. Influence of spacing on the maturity, some postharvest qualities

and profitability of Chinese cabbage. BS Thesis. BSU, La Trinidad, Benguet.
Pp.29-30.

DEGALA, J.E. 2003. Growth and yield performance of sweet basil as influenced by planting

distance. BS Thesis. BSU, La Trinidad, Benguet. Pp. 10-11.

FALOLO, C.B. 2003. Growth and yield performance of Florence fennel (Facniculum dulce

Mill.) as influenced by planting distance. BS Thesis. BSU, La Trinidad,
Benguet. P. 11.


Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

GARDNER, V.R. 1951. Basic Horticulture. USA: McMillan Co. P. 10.


KINOSHITA, K. 1972. Vegetable Production in the Sub-tropics. Tokyo: Lippincott Co.,

Inc. Pp. 146-148.

KNOTT, J.E. 1964. Handbook of Vegetable Growers. New York: John Willy and Sons,

Inc. P. 14.

LOMIWES, I.T. 2004. Growth and yield performance of spoon cabbage as affected by sources
and rates of nitrogen fertilizers. BS Thesis. BSU, La Trinidad, Benguet. Pp. 1-4.

MALINGTA, C.H. 1992. Effect of plant spacing on the growth and yield of cauliflower.

BS Thesis. BSU, La Trinidad, Benguet. Pp. 4-5.

MCDONALD, E. 1993. The American Horticultural Society Encyclopedia of Gardening.

USA: Dorling Kindersley, Inc. P. 320.

MENDOZA, A.V. 1966. The effect of nitrogen on the yield of snapbeans. BS Thesis.

MSAC, La Trinidad, Benguet. Pp. 16-18.

SAWAT, V. 1976. The effect of population density on tree strains of head lettuce. BS Thesis.
MSAC, La Trinidad, Benguet. P. 12.

TAMAYO, D.B. 1975. RP’s 5 Top Favorite Vegetable. Quezon City Forest and Farms 8:6,

145.

THOMPSON, H.C. 1931. Vegetable Crops. New York: McGraw Hill Books Co., Inc. P.

245.

WATTS, R.L. 1972. Vegetable Gardening. New York: Orange Judd. P. 271.

UICHANCO, L.G. 1959. Philippine agriculture col. 1. 2nd Ed. College of Agriculture,
University of the Philippines Press. P. 329.



Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006


APPENDICES
Appendix Table 1. Leaf length on the first week (cm)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1


11.52 9.02 10.42
9.58
40.54
10.14

T2


13.00 11.56 10.86
12.54
47.96
11.99

T3


12.16 11.80 10.84
11.46
46.26
11.57

T4


10.10 11.14 9.06
11.90
42.20
10.55

T5


9.94 13.34 10.22
10.34
43.84
10.96
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3

3.978 1.326

Factor A
4


8.975
2.244

1.73ns

3.26
5.41

Error

12
15.533 1.294
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19 28.486
44444444444444444444444444444444444444444444444444444444444444
ns = Not significant






Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Coefficient of variation = 10.31%



Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006


Appendix Table 2. Leaf length on the second week (cm)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1


15.72 17.60 19.14 18.50
70.96
17.74

T2


18.22 20.34 20.48 20.50
79.54
19.89

T3


18.22 20.18 19.12 19.74
77.26
19.32

T4


19.13 20.72 19.42 20.20
79.47
19.87

T5


18.24 19.76 20.14 18.52
76.66
19.17
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3
11.208 3.736

Factor A
4

12.2
43
3.061

6.72**

3.26
5.41

Error

12

5.465 0.455
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19
28.915
44444444444444444444444444444444444444444444444444444444444444
** = Highly significant



Coefficient of
variation = 3.52%

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Appendix Table 3. Leaf length on the third week (cm)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1


22.54 21.54 21.82 21.84
87.74
21.94

T2


23.46 24.38 23.84 23.22
94.90
23.73

T3


23.28 24.56 22.97 23.72
94.53
23.63

T4


22.64 22.98 23.34 23.38
92.34
23.09

T5


24.48 23.52 24.46 21.76
94.22
23.56
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3

1.123 0.374

Factor A
4


8.805
2.201

3.84*

3.26
5.41

Error

12
6.879 0.573
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19 16.807
44444444444444444444444444444444444444444444444444444444444444
* = Significant





Coefficient of variation = 3.27%

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Appendix Table 4. Leaf length on the fourth week (cm)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1


24.96 23.54 24.72 22.72
95.94
23.99

T2


26.22 25.00 27.00 25.40
103.62
25.91

T3


25.20 28.30 26.08 25.50
105.08
26.27

T4


24.80 25.44 26.82 26.04
103.10
25.78

T5


25.16 24.82 26.86 24.74
101.58
25.40
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3
5.368 1.789

Factor A
4

12.5
32
3.133

3.31*

3.26
5.41

Error

12
11.374 0.948
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19
29.274
44444444444444444444444444444444444444444444444444444444444444
* = Significant





Coefficient of variation = 3.82%

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Appendix Table 5. Average weight (g/bunch)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1

60.74 61.04 58.68 58.18
238.64
9.66

T2

116.07 118.45 126.79 119.64
480.95
120.24

T3

152.08 145.83 168.75 168.75
635.41
158.85

T4

115.91 150.00 145.23 145.23
556.37
139.09

T5


151.25
165.00
157.50
125.00 598.75

149.69
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3
427.049 142.350

Factor A
4
24979.119
6244.780
44.25**
3.26
5.41

Error

12 1693.563 141.130
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19 27099.730
44444444444444444444444444444444444444444444444444444444444444
** = Highly significant



Coefficient of
variation = 9.47%

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Appendix Table 6. Non-marketable yield (kg/plot)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1


2.65 1.90 3.40
2.75 10.70 2.68

T2


2.25 1.90 4.05 2.20
10.40 2.60

T3


2.00 1.85 2.30 2.25
8.40 2.10

T4


1.55 1.55 2.15 2.69
7.94 1.99

T5


2.00 1.65 1.95 1.90
7.50 1.88
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3

2.690 0.897

Factor A
4

2.14
6
0.536

2.65ns

3.26
5.41

Error

12
2.428 0.202
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19
7.263
44444444444444444444444444444444444444444444444444444444444444
** = Highly significant



Coefficient of
variation = 20.02%

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Appendix Table 7. Marketable yield (kg/plot)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1


7.25 8.05 6.40 6.85
28.55
7.14

T2


7.50 8.05 6.60 7.65
29.80
7.45

T3


5.30 5.15 4.90 5.85
21.20
5.30

T4


5.10 5.65 4.10 3.70
18.55
4.64

T5


4.05 4.95 4.35 3.10
16.45
4.11
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3
3.616 1.205

Factor A
4

35.7
37
8.934

29.30**
3.26
5.41

Error

12
3.659 0.305
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19
43.012
44444444444444444444444444444444444444444444444444444444444444
** = Highly significant



Coefficient of
variation = 9.64%

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Appendix Table 8. Total yield (kg/plot)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1


9.90 9.95 9.80 9.60
39.25
9.81

T2


9.75 9.95 10.65 10.05
40.40
10.10

T3


7.30 7.00 7.20 8.10
29.60
7.40

T4


5.10 6.60 6.25 6.39
24.34
6.09

T5


6.05 6.60 6.30 5.00
23.95
5.99
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3

0.577 0.192

Factor A
4

62.7
88
15.697

54.56**
3.26
5.41

Error

12
3.452 0.288
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19
66.817
44444444444444444444444444444444444444444444444444444444444444
** = Highly significant



Coefficient of
variation = 6.81%

Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Appendix Table 9. Computed yield (/ha)

44444444444444444444444444444444444444444444444444444444444444



R E P L I C A T I O N
TREATMENT ))))))))))))))))))))))))))))
TOTAL
MEAN


I
II III IV
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
T1


19.80 19.90 19.60 19.20
78.50
19.63

T2


19.50 19.90 21.30 20.10
80.80
20.20

T3


14.60 14.00 14.40 16.20
59.20
14.80

T4


10.20 13.20 12.50 12.78
48.68
12.17

T5


12.10 13.20 12.60 10.00
47.90
11.98
44444444444444444444444444444444444444444444444444444444444444


Analysis of Variance

44444444444444444444444444444444444444444444444444444444444444
Source of Degrees of Sum of Mean Computed TABULAR F
variation freedom squares square F 0.05 0.01
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Replication
3

2.309 0.770

Factor A
4

251.150
62.788

54.56**
3.26
5.41

Error

12
13.808 1.151
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Total

19 267.268
44444444444444444444444444444444444444444444444444444444444444
** = Highly significant



Coefficient of
variation = 6.81%


Growth and Yield Response of Spoon Cabbage (Brassica chinensis L.)
to Planting Distance / Jonalyn C. Lasuna. 2006

Document Outline

  • Growth and Yield Response of SpoonCabbage (Brassica chinensis L.) to Planting Distance
    • BIBLIOGRAPHY
    • ABSTRACT
    • TABLE OF CONTENTS
    • INTRODUCTION
    • REVIEW OF LITERATURE
      • The Crop as a Vegetable
      • Importance and Effect of Spacing
    • MATERIALS AND METHODS
    • RESULTS AND DISCUSSION
      • Leaf Length
      • Average Weight, Non-marketableand Marketable Yield
      • Total and Computed Yieldand Benefit:Cost Ratio
    • SUMMARY, CONCLUSION AND RECOMMENDATION
      • Summary
      • Conclusion
      • Recommendation
    • LITERATURE CITED
    • APPENDICES