BIBLIOGRAPHY

JOEL S. CATONES. OCTOBER 2008. Effect of Gibberellic Acid GA₃ on the Growth

and Flowering of milflores (*Hydrangea Macropylla*). Benguet State University

Adviser; Fernando R. Gonzales, PhD

ABSTRACT

The study was conducted at Lamtang, Puguis, La Trinidad, Benguet from November

2007 to March 2008 which aimed to compare the effect of GA₃ concentration on the vegetative

growth and flowering of potted milflores plants; to determine the effect of different gibberellic

acid GA₃ on the growth and flowering of milflores, and to determine the best concentration of

gibberellic acid GA₃ that will enhance vegetative growth with better flower quality.

The earliest to develop flower buds observed were on milflores plant treated at three

month and the longest flower bud to develop was one month from treatment. Plants sprayed with

50 ppm GA₃ were the earliest to develop flower buds while untreated plants required longer days

to develop flower buds.

Milflores plants treated with smaller amount of GA₃ concentration was the earliest to

develop flower followed by the higher amount of GA₃ concentration. Untreated plants show

delayed flower development and flowering.

The highest number of leaves counted at 75% anthesis was produced by the plant treated

at two months. Plant sprayed with 100 ppm GA₃ has the highest number of leaves counted

followed by 50 ppm.

Milflores plants treated at two month produce the longest stem measured at 75% anthesis followed by one month and three month. Plant sprayed with 250 ppm GA_3 the longest stem measured followed by 100 ppm.

The widest flower diameter was produced by 250 ppm followed by 100 ppm GA_3 concentration at two month. The smallest flower diameter measured was observed in untreated plants.

The thickest stems were measured on milflores plant treated with 250 ppm and followed by plants sprayed with 50 and 100 ppm GA₃. Two month produce the thickest stems followed by three month and one month from treatment.

Plats treated at one month produce the largest number of leaves of lateral stems followed by three month and two month.GA₃ have a slight effect on the lateral stems of milflores plants.

TABLE OF CONTENTS

	Page
Bibliography	i
Abstract	i
Table of Contents	iii
INTRODUCTION	
Nature of the study	1
Importance of the study	2
Objective the study	2
Place and Time of the Study	3
REVIEW OF RELATED LITERATURE	4
METHODOLOGY	
Materials	8
Methods	8
RESULTS AND DISCUSSION	
Number of Days from Transplanting to Flower Bud formation	12
Number of Days from Flower Bud Formation to 75% Anthesis	14
Average Number of Leaves per Plant at 75% Anthesis	15
Final Height at Flowering.	17
Flower Diameter	19
Stem Diameter	21
Number of Lateral Stems	22

SUMMARY, CONCLUSSION AND RECOMMENDATION

	Summary	25
	Conclusion.	26
	Recommendation	26
LITER	RATURE CITED	27
A DEN	DICES	30

INTRODUCTION

Nature of the Study

Hydrangea is a genus of shrub of the Saxifrage Family consisting of about 80 species. One of these species is the milflores (*hydrangea macrophylla*). Hydrangea is a strong deciduous shrub having a height and width of 6 feet. Leaves are broadly ovate, 4-6 inches long and 2.75-4 inches wide width coarse4 serrations, yellowish to fresh green in color flowers are in large braches globose cyme of the hortensia or mop-head type with abundant, mostly sterile, individual floret, 4-5petal linked sepal per flower (Anon, 2002).

This group consists of hardy and tender shrubs and woody climbers. They are mostly deciduous plants, through a few of the tender species are evergreen. They are native of the Himalayas, North and South America, and central and eastern Asia. These flowering shrubs have different flower from the large globes of the "mopheads" to the discs of the "lacecaps" to the thick cones of the oakleaf and panicle hydrangea. They come in an array of colors from pure white to brilliant crimson, pale lilac to intensive azure. Some varieties produce blossoms with two-toned colors, while some flowers have contrasting eyes, and some even is speckled or striped with another color. There are two kinds of floret in the flower heads. The fertile or perfect florets are small and inconspicuous. They bear the male and female parts and are usually found in the center of the cluster. The flower heads or mopheads hydrangeas consists almost entirely or sterile floret. Beside from their lovely flower, some hydrangeas are valued for their attractive foliage or bark. The size of the plants range from dwarf (about ft high) to large bushes with stems over 10 ft high. There are also climbing hydrangeas whose aerial can bring stem up to 80 ft high. H. aspera subsp. Sargentia (Sargent Hydrangea) is an attractive medium to large-sized

shrub with hairy shoots and large, plush leaves. The large, flat flower head are produced in mid-o late summer and are bluish with white ray florests. This variety is excellent for a sheltered shrub border or woodland, but need shade and wind protection. H. "Ayesha" is a deciduous shrub that has shiny green leaves and flattened, fragrant flower heads consisting of cup-shape florests, resembling those of the lilac. They are grayish lilac or pink, depending upon the soil, eventually turning a greenish-blue to turquoise color. H. macrophylla 'Alltona' is a mophead hydrangea with flower heads growing up to a foot in diameter. This deciduous plat forms a mall shrub wit large, rose colored florests. This variety grows best in shade. H. quercifolia (Oakleaf Hydrangea) is a medium-sized, deciduous shrub valued for its splendid autumn colors. The large, deeply lobed leaves resemble those of the oak, thus the common name. In late summer, conical heads of large, white, sterile florets are produced. H. serratifoliais a tender, climbing hydrangea that grows best against a wall in sun or shade. It has small, leathery leaves and columnar panicles, up to 5 inches long, of creamy flowers. (Anon. undated)

<u>Importance of the Study</u>

Due to the economic potential and aesthetic value of potted milflores as bedding plants for outdoor landscaping and cut flowers, it is important therefore to find the best way of enhancing growth with quality flower of milflores with the use of giberellic acid.

Objectives of the Study

- 1. To determine the effect of giberellic acid (GA₃) on the growth and flowering of milflores.
- 2. To determine the best concentration of giberellic acid (GA_3) that will enhance vegetative growth with better flower quality.

- 3. The study was conducted to determine the best stage of gibberellic acid (GA_3) application and to;
- 4. Determine the interaction effect on various stage of gibberellic acid (GA_3) application and GA_3 concentration.

Place and Time of the Study

The experiment was conducted at the Ornamental Horticulture Research Area, Benguet State University, Benguet August 2007 to January 2008.

REVIEW OF RELATED LITERATURE

Gibberellic acid GA₃ belongs to a group of plant hormones that promote plant growth. It is one of the plant growth regulators that can provide a wide range of plant response such as breaking dormancy, incubation of flowering, parthenocarpic fruit set and sex expression (Devlin 1977).

As Devlin (1977) reported, gibberellins are naturally occurring hormones that have been isolated from higher plant tissues. They act similarly as indole acetic acid (IAA), another kind of hormone to promote cell elongation, induce parthenocarpy, promote cambial activity, and issue new RPA and protein synthesis.

Gibberellins are known to alter the growth of plants, since their applications has been found to cause rosette plants to elongation in a manner suggestive to bolting. Investigations have been made on effects of GA₃ on the floral induction. Their influence on the growth and flowering of some crops has been investigated in greenhouse and in the field for the past years. Studies revealed earlier opening of flowers in those plants treated with GA₃ and reduction on the number of days required for the formation of flower buds (Leopold and Kriedman, 1964)

Plants treated with gibberellins generally grow to three times taller than the untreated plants. Promotion of flowering particularly in biennials and long day plants is one of the most striking effects of gibberellins. Biennials commonly do not produce long stem, and flower only if they are exposed to low temperature. However, when treated with gibberellins, they flower without cold temperature (Grealach and Adams, 1962).

Findings revealed that gibberellins variety influence the growth and flowering productivity of Shasta daisy. Lower GA_3 concentrations of 600 ppm at repeated application

improve quality and hastened flowering. The treated plants appeared healthy and having standard flower stem length. Similarly, GA₃ at flowering concentrations with repeated applications affected the highest number of flowering per plant, but plants treated with the highest concentration had slight decrease in floral production (Dulay, 1980).

Mendoza (1993) stated that gibberellins acid treatment can induce flowering of some periodically sensitive and some cold requiring plants. This means that gibberellins can replace the cold requirements of some plants. Subsequently, it has also been shown that the induction of flowering may bring about a natural size in the endogenous gibberellins content within the plant.

Application of GA₃ as foliar spray to stem species at 10- 100 ppm hasten flowering by ton days to four weeks in petunia, stock, larkspur, English daisy, china aster, and gerbera (Weaver 1972).

Weir (1974) stated that gibberellins applied to long day rosette plant produce flowers under short to long day. Likewise gibberellins inhibited flower initiation in many other plants especially woody plants. It has been reported that flowering in Azalea was hastened from 25 to 59 days when sprayed with GA_{3 in} comparison to plant which received cold treatment for 30 days prior to forcing (Barba and Pokorny, 1961).

As Nickell (1986) stated, GA₃ along with kinetin also are known to promote flowering and prevent flower drop in tomato at high temperature. Devlin (1977) also reported that GA₃ are used to increase the number of grapes in the cluster. Other commercial uses the stimulation of flower bud formation and fruit set apples and pears and the improvement in size; color and quality of the fruit of many plants.

Caluya and Imlan (1959) reported that GA_3 induces the rapid elongation of plants in general. Even s early as one week after first application, the treated plants were already taller that

the untreated plants. Also, it was found that the more concentrated the growth regulator, the higher was the weekly height increasement in the stem length.

Application of 1,250 ppm GA₃ at three leaf-stage and four-leaf stage gladiolus bolted earlier, produce bigger sized corns, loner flower spikes at flowering with more and bigger flowers (Albis, 1995).

The earliness in flowering could be attributed to he exogenous application of GA₃ that promote flowering by increasing the mitotic cell division in the apex, thus, rendering it more responsible to flower stimulus. Zeevart (1962) farther stated that flowering could be enhanced by increasing the GA₃ level of the plant through nitrogenous application. Gibberellins cause or promote flowering by either facilitating the formation of flowering hormones in the leaves or the expressions in the growing bud.

Gibberellins appear to affect almost all plant organs from root to flower, fruit and seed development. Shein and Jackson 1972 reported that gibberellic acid applied to decapitated stems, petioles or to lands promote growth of buds in the axile of primary leaves.

Galimba (1993) reported that three application of 1000 ppm GA₃ at weekly intervals significantly promote earlier lower development, improve flower quality, produce bigger sized bloom at harvesting and produce taller plants with longer floral stems of anthuriom cv. Kansako.

It was also reported that gibberellic acid treatment greatly affected the flowering of Mr. Lincoln roses (Mendoza, 1993). Gibberellic acid at 500 ppm with two applications significantly enhanced cutflower production, increase yield, higher number of leaves per plant at anthesis, longer flower buds and blooms higher leaf area and leaf index at flowering and promote longer vase life.

Hermano and Ladilad (1980) found that the rate of growth effected by 400 ppm, four weeks from treatment. However, plant treated with the highest concentration (1000 ppm at GA_3 finally showed the fastest rate of growth in the later part of the vegetative stage).

In 1979, Kim started that some change on chemical compounds of plants occurs when treated with gibberellins. These were an increase in water, crude fat and protein content and decrease in glucose, fructose, galactose, and xylose content of winter cultivated Chinese cabbage, the changes in chemical compounds could lead to he accumulation of gibberellins for the synthesis of florigen, a hypothetical flowering hormone which cause early floral evocations.

In general gibberellins are group of plant hormones that promote plant growth. They are used for encouraging plant growth, hastening germination, and encouraging growth in odd weather increasing the size of some fruits, increasing the yield of some cops, and breaking dormancy of various seeds. The response of gibberellins varies with the plant specie (Galingan, 1997).

MATERIALS AND METHODS

Material

The materials to be used in the experiment will be rooted milflores (Hydrangea Macrophylla) cuttings; gibberellic acid; polyethylene black plastic bags (5x5 inch) filled with the potting mix of garden soil, compost (1:1); watering tools; garden tools; and identifying tags.

Methods

The experiment will be laid out in a complete randomized design (CRD) in factorial arrangement with three replication. Factor A will be the stage of application and factor B will be the gibberellic acid concentrations. There will be five samples per treatment replicated three times. The treatment will be as follows.

Factor A (Stage of Application)

- S1 -1 month from planting
- S2 -2 month from planting
- S3 -3 month from planting

Factor B (Gibberellic Acid Concentration)

- $C1-0\ ppm/\ control$
- C2 50 ppm
- C3 100 ppm
- C4 250 ppm
- C5 500 ppm

Planting of Milflores

Milflores cutting will be rooted first in a nursery and then transplanted in 5x5 inches polyethylene black plastic bags with 1 part garden soil and 1 part compost and .5 part chicken dung.

Gibberellic Acid Application

The various concentration of gibberellic acid will be applied once on the shoot of milflores plants 15 days and 30 days from planting as specified in the treatment.

Other Cultural Management Practice

All other cultural management practice in milflores production such as watering, and control of pest (insects, disease and weeds) will be strictly employed as the need arise.

Data to be Gathered;

The data to be gathered will be as follows:

- 1. Days from transplanting to flower bud formation(0.5 cm bud size)
- -The number of days from transplanting to (0.5 cm bud size) flower bud formation was counted.
 - 2. Number of days from flower bud formation to 75% anthesis.
- -The number of days from flower bud formation to 75% flower anthesis was counted
 - 3. Average number of leaves per plant at 75% anthesis.
 - -The number of leaves per plant was counted at 75% anthesis at flowering.
 - 4. Final height at flowering (cm)

- The height was taken by measuring the plant from base to the top at flowering (75% anthesis)
 - 5. Flower diameter at full bloom stage (cm)
 - The size of the flower was measured at flowering stage (75% anthesis).
 - 6. Stem diameter (cm)
- -This was obtained by measuring the diameter of the center of the plant at flowering (75% anthesis) with the use of vernier caliper.
 - 7. Number of lateral stems at flowering
 - -This was counted by counting the lateral stems at flowering stage (75%)
 - 8. Documentation of the study in pictures
 - Documentation of the study was done through pictures



Plate 1. Gibberellic acid application

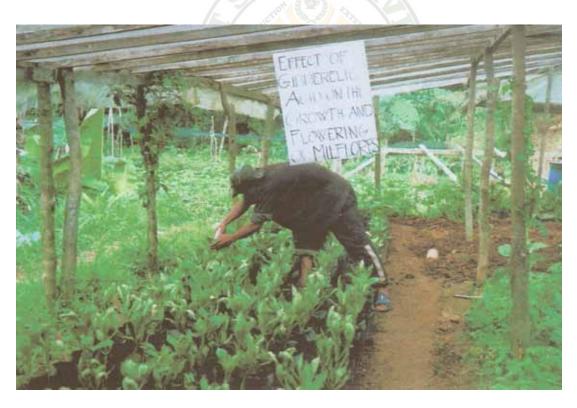


Plate 2. Gibberellic acid application

Plate 3. Days from flower bud formation to 75% anthesis.

Plate 4. Over view of potted milflores plants treated with gibberellic acid (GA_3) at fllowering.

RESULTS AND DISCUSSION

1. Days from transplanting to flower bud formation (0.5 cm bud size)

Effect on the Stage of Application. Table 1 show that the effect of the stage of application had significant differences. Plant sprayed after three months from planting has the earliest bud to develop, followed by two months to form flower buds. One month was the last to develop flower buds from the time of application.

Weir (1974) stated that gibberellins applied to long day roseate plants produce flowers under short to long day. Like wise gibberellins inhibited flower initiation in many other plants especially woody plants.

Effect of GA₃ concentration. Result show that a significant difference was obtained on the number of days from transplanting to flower bud formation as affected by the different concentration of GA₃ applied on milflores. The untreated or control required the longest number of days to initiate flower buds from the time of transplanting. Plant sprayed with 50 ppm, was the earliest to develop flower buds, and followed by 100 ppm. Plant sprayed with the highest concentration of 500ppm has developed flower buds late among the treated plants.

Interaction Effect. A significant difference was obtained between the different GA₃concentration on the stage of application from transplanting to flower bud formation. Untreated plants showed significantly delayed of flower bud formation with 160.586 days; while the earliest to initiate flower buds were the plant sprayed with 50 ppm with144.400 days. It was observe further, that as the amount of GA₃ concentration increases the number of days also increases.

Table 1. Days from transplanting to flower bud formation (0.5 cm)

ENTRY		MEAN
Stage of Appl	ication	
1	month	160.586a
2	month	157.040b
3	month	126.577c
Gibberellic A	cid Concentration	
C1 –	0 ppm/ control	154.556a
C2 –	50 ppm	144.400c
C3 –	100 ppm	145.206c
C4 –	250 ppm	148.308b
C5 -	500 ppm	147.896

2. Number of Days from Flower Bud Formation to 75% Anthesis

Effect on the Stage of Application. Result shows no significant effect on the stage of application from flower bud formation to 75% anthesis stage as shown in table 2. However, two month from flower bud formation has reaches its 75% anthesis earlier followed by one month. Three month required longer number of days to reach 75% anthesis. Application of GA₃as foliar spray to stem species at 10-100 ppm hasten flowering by ten days to four weeks (Weaver, 1972).

Effect of GA3 Concentration. Result showed significant differences on the number of days from flower bud formation to 75% anthesis as affected by the different GA₃ concentration. A delayed in flower development were observed in plants which were not sprayed with GA₃ concentration or the control. Plant treated with 100 ppm GA₃ concentration has the earliest to

reach its 75% anthesis stage, while plant sprayed with 500 ppm GA₃ concentration has reaches its 75% anthesis late.

<u>Interaction Effect.</u> Significant interactions were observed between the stage of application from flower bud formation to 75% anthesis and the plant sprayed with different GA₃ concentration. Plant sprayed with 100 ppm GA₃ concentration that is treated three month after flower bud formation has the earliest to reaches its 75% anthesis while control at three month required longer number of days to bloom at 75% anthesis.

Studies revealed earlier opening of flower in that plant treated with GA₃ and reduction on the number of days required for the formation of flower buds (Leopold and Kriedman, 1964).

Table 2. Number of days from flower bud formation to 75% anthesis

ENTRY		Ingri	MEAN
Stage of App	lication		
1	month		61.487a
2	month		59.391a
3	month		62.215a
Gibberellic A	cid Concentration		
C1 –	0 ppm/ control		68.300a
C2 –	50 ppm		57.467b
C3 –	100 ppm		56.056b
C4 –	250 ppm		61.000b
C5 -	500 ppm		62.333ab

3. Average Number of Leaves per Plant

Effect on the Stage of Application. Table 3 shows that the number of leaves per plant had significant differences. Plant sprayed after two month has the highest number of leaves with 15.556 leaves per plant, followed by one month after sprayingwith14.327 leaves per plant. Three month from spaying had the least number of leaves with 13.313 per plant at 75% anthesis.

Effect of GA₃ Concentration. There is significant effect of the different GA₃ concentration on the number of leaves produce per plant at 75% anthesis. Plant sprayed with 100 ppm GA₃ concentration obtained the highest number of leaves per plant at 75% anthesis with15.90, followed by 250 ppm and50 ppm GA₃ concentration having14.176 and 14.704, respectively. The lowest number of leaves counted was obtained from plants of untreated or control and 500 ppm GA₃concentration which had 13.761 and13.444 leaves per plant at 75% anthesis.

Interaction Effect. A significant difference was obtained between the stage of application and the different GA₃ concentration in terms on the number of leaves per plant at 75% anthesis. Plant sprayed with 100 ppm GA₃ concentration after two month produces the highest number of leaves with 18.223 per plant at 75% anthesis. The months that produce the least number of leaves were from three month treated with 500ppm GA₃ concentration with 10.223 leaves per plant at 75% anthesis.

Mendoza 19993, stated that gibberellic acid at 500 ppm with two applications significantly enhance cutflower production, increase yield, higher number of leaves per plant at anthesis, longer flower buds and blooms higher leaf area index at flowering and promote longer vase life.

Table 3. Average number of leaves per plant

ENTRY		MEAN
Stage of App	lication	
1	month	14.327ab
2	month	15.556a
3	month	13.313b
Gibberellic A	Acid Concentration	
C1 –	0 ppm/ control	13.761b
C2 –	50 ppm	14.704ab
C3 –	100 ppm	15.908a
C4 –	250 ppm	14.176b
C5 -	500 ppm	13.444b

4. Final Height at Flowering (cm)

Effect on the Stage of Application. Result show a significant differences were obtained on the height of plant at 75% anthesis. Two months from spraying had the longest stems with 58.281 cm, followed by one month from spraying with 49.942 cm per plant. Three month from spraying had the shortest stem measured with 44.998 cm at 75% anthesis.

Effect of GA₃ Concentration. The different GA₃ concentration shows a significant effect on the height of milflores plants at 75% anthesis. Plants sprayed with 250 and 100 ppm GA₃ concentration produce longer stem length at 75% anthesis which had 57.394 and 55.924 cm per

plant. The shortest stem measured was obtained from untreated plants with 39.482 per plant at 75% anthesis.

Interaction Effect. A significant difference was obtained from the stage of application with the different GA₃ concentration on the height of milflores plants at 75% anthesis. Result show that 250 ppm GA₃ concentration which was sprayed two month after treatment has the longest stem length with an average of 71.500 cm. on the other hand, untreated plants at two month had the shortest stem length measured with 37.890 cm. it was observed further, that all plants treated with GA₃concentration except for the stage of application had a longer stems compared to those which were not treated.

Table 4. Final height at flowering

ENTRY		5 Harris 10 A	MEAN
Stage of Appl	ication		
1	month		49.942b
2	month		58.281a
3	month		44.998c
Gibberellic A	cid Concentration		
C1 –	0 ppm/ control		39.482d
C2 –	50 ppm		52.983b
C3 –	100 ppm		55.924a
C4 –	250 ppm		57.394a
C5 -	500 ppm		49.583c

Caluya and Imlan (1959) reported that GA_3 induce the rapid elongation of plants in general. Even as early as one week after first application, the treated plants were already taller than the untreated

5. Flower Diameter

Effect on the Stage of Application. Result shows significant differences were observe on the flower diameter of milflores plants at 75% anthesis. Two months from spraying had the widest and biggest flower diameter measured with 21.897 cm. then followed by three months from spraying with 18.106 cm flower diameter measured. One month from spraying have the smallest flower that bloom measured with 16.300 cm at 75% anthesis.

Effect of GA₃ Concentration. The different GA₃ concentration shows a significant effect on the flower diameter of milflores plants at 75% anthesis. Plants sprayed with 250 and 100 ppm GA₃ concentration obtained the biggest flower diameter measured with 19.699 cm at 75 % anthesis. Plant treated with 500 and 50 ppm GA₃ concentration has light significant differences on flower diameter with 18.849 and 18.726 am at 75% anthesis. Untreated plant obtained the smallest flower diameter measured with 17.053 cm per plant at 75% anthesis.

Interaction Effect. A significant difference were observed between the difference GA3 concentration and the stage of application in terms on stem diameter measured on milflores plants at 75% anthesis. Plants treated with 250 ppm GA₃ concentration at two month produce the widest flower diameter measured with 23.250 cm at 75% anthesis. And smallest flower diameter measured was from untreated plants at one month with 14.500 cm per plant at 75% anthesis.

Application of 1,250 ppm GA₃, at three leaf-stage and four-leaf stage gladiolus bolted earlier, produce bigger size corms, longer flower spikes at flowering with more and bigger flowers (Albis, 1995)

Table 5. Stem diameter (cm)

ENTRY		MEAN
Stage of Appl	lication	
1	month	16.331c
2	month	21.897a
3	month	18.106b
Gibberellic A	cid Concentration	
C1 –	0 ppm/ control	17.053c
C2 –	50 ppm	18.726b
C3 –	100 ppm	19.530ab
C4 –	250 ppm	19.699a
C5 -	500 ppm	18.849ab

6. Stem Diameter (cm)

Effect on the Stage of Application. Significant differences were observed on the stem diameter of milflores plants at 75% anthesis. Milflores plants sprayed with GA₃ at two month have the biggest stem diameter measured with 1.186cm, followed by three month from spraying with 1.131 cm per plant at 75% anthesis. One month from spraying GA₃ have the smallest stem diameter measured with 0.724 cm per plant at 75% anthesis. Further more, because of the smallness of the stems of milflores plants treated at one month, it needs a supporting material (stick) so that the flower will not touch the ground.

Effect of GA₃ Concentration. A significant effect ware obtained from the different GA₃ concentration with the stem diameter of milflores plants. Plans treated with 250 ppm GA₃

concentration have the biggest stem diameter measured with $1.128~\rm cm$ at 75% anthesis. A significant difference was measured on $500~\rm and$ $100~\rm ppm$ GA_3 concentration with a $1.084~\rm and$ $1.030~\rm cm$ per plant at the time of flowering. Untreated plants obtained the smallest stem diameter that has been measured with $0.550~\rm cm$ at 75% anthesis.

Table 6. Flower diameter (cm)

ENTRY	MEAN
Stage of Application	
1 month	0.724b
2 month	1.186a
3 month	1.131a
Gibberellic Acid Concentration	
C1 – 0 ppm/ control	0.844a
C2 – 50 ppm	1.084ab
C3 – 100 ppm	1.030ab
C4 – 250 ppm	1.128a
C5 - 500 ppm	0.981b

Interaction Effect. A significant effect was observed between the different GA_3 concentration and the stage of application in terms of stem diameter at 75% anthesis. Milflores plants treated with 100 ppm GA_3 concentration at two month have the largest stem diameter,

while untreated plants at one month have the smallest stem diameter measured with 0.550 cm at 75% anthesis.

7. Number of Lateral Stems

Effect on the Stage of Application. A significant difference was obtained on the number of lateral stems with the effect of the st6age of application at 75% anthesis. Plants treated at one month have the largest number of lateral stems counted with 3.0 lateral stems per plant, while the smallest number of lateral stems counted was two month from treatment with 2.200lateral stems per plant at 75% anthesis.

Effect of GA₃ Concentration. Spraying GA₃ concentration on potted milflores plants did not significantly affect the number of lateral stems produced per plant at 75% anthesis.

Interaction Effect. Table 7 shows a comparable significant effect between the different GA₃ concentration and the stage of application on the potted milflores plants. Milflores plants treated with 50 ppm at one month and 500 ppm GA₃concentration obtained the highest number of lateral stems with 3.333 per plant at 75% anthesis. While untreated plants at two month produce the least number of lateral stems at 75% anthesis with 1.667 per plant.

Hermano and Ladilad (1980) found that the rate of growth effected by 400 ppm, four weeks from treatment. However, plant treated with the highest concentration (1000 ppm) at GA_3 finally showed the fastest rate of growth in the later part of the vegetative stage.

Table 7. Number of lateral stems

ENTRY		MEAN
Stage of Appl	ication	
1	month	3.000a
2	month	2.200b
3	month	2.533ab
Gibberellic A	cid Concentration	
C1 –	0 ppm/ control	2.222a
C2 –	50 ppm	2.556a
C3 –	100 ppm	2.667a
C4 –	250 ppm	3.000a
C5 -	500 ppm	2.444a

SUMMARY, CONCLUSION AND RECOMMENDATION

Summary

The study was conducted at Lamtang, Puguis, La Trinidad, Benguet from November 2007 to March 2008 which aimed to compare the effect of GA₃ concentration on the vegetative growth and flowering of potted milflores plants; to determine the effect of different gibberellic acid GA₃ on the growth and flowering of milflores, and to determine the best concentration of gibberellic acid GA₃ that will enhance vegetative growth with better flower quality.

The earliest to develop flower buds observed were on milflores plant treated at three month and the longest flower bud to develop was one month from treatment. Plants sprayed with 50 ppm GA₃ were the earliest to develop flower buds while untreated plants required longer days to develop flower buds.

Milflores plants treated with smaller amount of GA₃ concentration was the earliest to develop flower followed by the higher amount of GA₃ concentration. Untreated plants show delayed flower development and flowering.

The highest number of leaves counted at 75% anthesis was produced by the plant treated at two months. Plant sprayed with 100 ppm GA_3 has the highest number of leaves counted followed by 50 ppm.

Milflores plants treated at two month produce the longest stem measured at 75% anthesis followed by one month and three month. Plant sprayed with 250 ppm GA_3 the longest stem measured followed by 100 ppm.

The widest flower diameter was produced by 250 ppm followed by 100 ppm GA_3 concentration at two month. The smallest flower diameter measured was observed in untreated plants.

The thickest stems were measured on milflores plant treated with 250 ppm and followed by plants sprayed with 50 and 100 ppm GA_3 . Two month produce the thickest stems followed by three month and one month from treatment.

Plats treated at one month produce the largest number of leaves of lateral stems followed by three month and two month.GA₃ have a slight effect on the lateral stems of milflores plants.

Conclusion

Based on the study conducted, and on the data gathered, potted milflores plants treated at two month shows to have responded better on the different GA₃ concentration based on the observed effect on its vegetative growth, and flower quality produced per plant.

Recommendation

It is therefore recommended the use of gibberellic acid (GA₃) as a growth regulator for milflores plants. And a further study regarding non milflores plants with a higher concentration as a consideration on its growth development should be conducted.

LITERATURE CITED

- ANONYMOUS.2002. Undated. Hydrangea macrophylla 'Nigra' http://www. Jgeocities.com/enchantedforest/palace/1170/abatias.htm
- ANONYMOUS. Undated. Hydrangea macrophylla 'mophead' http://www.botany. com/hydrangea.htm.
- ALBIS, M. C. 1995. Growth and flowering of gladiolus cv. Friendship pink as affected by GA₃ Treatments. Unpublished BS Thesis. Benguet State University, La Trinidad, Benguet, p.3
- BARBA, R.C. and F. A. Pokorny.1961. Influence of several concentration of GA₃. Proc. Assoc. of Southern Agriculture Workers. Pp 60-61
- CALUYA, M. and J. S. IMLAN.1959. Effect of gibberellic acid on the fiber of kenaf. The Philippine Agriculturist.43 (5) 369-372.
- DEVLIN, B. M. 1977. Plant Physiology. New York. Von Nostrand Rienholdn Co. Pp.387-484.
- DULAY. T. A. 1980. The effect of GA₃ on the growth and flowering productivity of Chrysanthemum maximum. Unpublished BS Thesis. Mountain State Agricultural College, La Trinidad, Benguet. Pp.37-39.
- GALIMBA, S. B. 1913. Effect of foliar gibberellic acid on the flowering of anthurium cv. Kansako under La Trinidad, Benguet condition. BS Thesis. BSU La Trinidad Benguet. Pp. 37-39.
- GALINGAN, A. C. 1977. Growth and flowering of five Lilium cut flowers as affected by GA₃ Application BS Thesis (Unpub). Benguet State University, La Trinidad, Benguet.Pp.3-5.
- GREULACH, V. A. and L. E. ADANIS. 1926. Plants. An Introduction of Modern Botany, Men Larch: John Wiley and Sons, Inc. Pp 367-370.
- HERMANO, F. G. and B. D. LADILAD. 1980. Flower induction of chrysanthemum morifolium Ex. Ruby Brethaupt. Mountain State Agricultural College.
- KIM, H. K. 1979. Studies in the composition of varieties cultivated Chinese cabbage treated with Gibberellins. Korean Hort. Scr. 7(6): 7-72.
- LEOPOLD, A.C. and P.E. KRIEDMAN.1964. Plant Growth and Development. 2nd ed. New York: McGrawHill Book Co. pp. 230-233.
- MENDOZA, L. C. 1993. Effect of Gibberellic Acid on the flowering and yield of rose cv. Mr. Lincoln BS Thesis BSU La Trinidad, Benguet. Pp.39-41.

- NICKELL, L. G. 1993. Effect of GA₃ on the flowering and yield of rose cv. Mr. Lincoln. Unpublished BS Thesis. Benguet State University, La Trinidad, Benguet. P.3
- SHEIN, T. G. and D.I. JACKSON.1972. Interaction between hormones, light, nutrition, and Extension of lateral and in Phjaseolus Vulgaris, I.M.J. Bot. Pp.791-800.
- WEIER, T. E. 1974 Botany: An Introduction to plant biology, Canada: John Willy and Sons inc. Pp. 397-398.
- WEAVER, R. J. 1972. Plant Growth Substance in Agriculture. San Francesco: WH Freeman and Co.Pp. 379-381.
- ZEEVART, J. A. 1962. The relationship between gibberellins and floral stimulus in Byophyllum daigremontranum. Planta. SD: 531-42.

APPENDICES

Appendix Table 1. Days from transplanting to flower bud formation (0.5 cm bud size)

	Rl	EPLICATION			
TREATMENT	I	II	III	TOTAL	MEAN
S1 C1	167	167	170	504.30	168.100
C2	152.25	155	159.75	467.00	155.667
C3	155.25	159	155	469.25	156.417
C4	160.5	163.67	162	486.17	162.057
C5	162	158.4	161.67	482.07	160.690
S2 C1	157.8	159.2	166.7	483.70	161.233
C2	151.8	151.8	158.2	461.80	153.933
C3	150.5	156.5	156	463.00	154.333
C4	159.8	156.8	156	472.60	157.533
C5	158	159.5	157	474.50	158.167
S3 C1	137	134	132	403.00	134.333
C2	122.4	123	125.4	370.80	123.600
C3	125.6	126.6	122.4	374.60	124.867
C4	126	124.4	125.6	376.00	125.333
C5	123	126.75	124.5	374.25	124.750

Total

Analysis of Variance

Source of	Degrees of	Sum of	mean of	Computed	TABUL	AR F_
Variation	Freedom	Squares	Squares	F	0.05	0.01
Factor A	2	10486.118	5243.059	788.19**	3.32	5.59
Factor B	4	574.500	143.625	21.59**	4.69	4.02
AB	8	64.873	8.109	1.22ns	2.27	5.17
Error	30	199.561	6.652			
Total	44	11325.052				

** = Highly Significant

Coefficient of variation= 40.49%

Ns = Not Significant

Appendix Table 2. Number of days from flower bud formation to 75% anthesis

REPLICATION					
TREATMENT	I	II	III	TOTAL	MEAN
$S_1 C_1$	65	66	67	198.00	66.000
C_2	55.8	50.33	56.5	162.63	54.467
C_3	60	61.67	63.5	185.17	61.723
C_4	61	60.5	63	184.50	61.500
C_5	65	66.5	60.5	192.00	64.000
				400 =0	
$S_2 C_1$	65	66.2	67.5	198.70	66.233
C_2	55	57.75	57	162.75	56.583
C_3	56.75	56.67	57.5	170.92	56.973
C_4	57	59.5	58	174.50	58.167
C_5	60	57.5	59.5	177.00	59.000
$S_3 C_1$	75.5	71 5	71	218.00	72.667
C_2	60.66	62.66	61.5	184.82	61.607
C_3	62	61.66	64.75	148.41	49.470
C_4	62	64.4	63.6	190.00	63.333
C_5	64	62	66	192.00	64.000

Analysis of Variance

Source of	Degrees of	Sum of	mean of	Computed	TABUL	AR F_
Variation	Freedom	Squares	Squares	F	0.05	0.01
Factor A	2	64.482	32.241	0.77ns	3.32	5.59
Factor B	4	827.954	206.989	1.94**	2.69	4.02
AB	8	427.155	53.394	1.27ns	2.27	5.17
Error	30	1257.256	41.909			
Total	44	2576.847				

** = Highly Significant

Coefficient of variation= 10.61%

Ns = Not Significant

Appendix Table 3. Average number of leaves per plant

	REPLICATION				
TREATMENT	I	II	III	TOTAL	MEAN
$\overline{S_1 C_1}$	14	12	13	13.000	39.00
C_2	11	17	13.25	13.750	41.25
C_3	19	12	15	15.333	46.00
C_4	14.33	13	14.5	13.943	41.83
C_5	16	16.5	14.33	15.610	46.83
$S_2 C_1$	15.25	13	14.25	14.167	42.50
C_2	15	16.67	15	15.557	46.67
C_3	18	16.67	20	18.223	54.67
C_4	16	16	14	15.333	46.00
C_5	13	14.5	16	14.500	43.50
$S_3 C_1$	15.75	14	12.6	14.117	42.35
C_2	16	14.67	13.75	14.807	44.42
C_3	15.75	12.5	14.25	14.067	42.50
C_4	14.25	13.6	11.9	03.250	39.75
C_5	11	8.67	11	10.223	30.67

Total

Analysis of Variance

Source of	Degrees of	Sum of	mean of	Computed	TABUI	LAR F_
Variation	Freedom	Squares	Squares	F	0.05	0.01
Factor A	2	37.859	18.929	6.64**	3.32	5.59
Factor B	4	33.639	8.410	2.95*	2.69	4.02
AB	8	51.156	6.395	2.24ns	2.27	5.17
Error	30	85.557	2.852			
Total	44	208.211				

** = Highly Significant

Coefficient of variation= 11.73%

*= Significant

Ns = Not Significant

Appendix Table 4. Final height at flowering (cm)

	REPLICATION				
TREATMENT	I	II	III	TOTAL	MEAN
$S_1 C_1$	48	33.5	37.5	119.00	39.667
C_2	49.3	55	53.75	158.05	52.683
\mathbb{C}_3	51.33	53	53.33	157.66	52.553
C_4	52.33	53.75	52.67	158.75	52.917
C_5	50.67	51	54	155.67	51.890
$S_2 C_1$	37.5	39	37.12	113.62	37.873
C_2	63	64.67	59	186.67	62.223
C_3	72	62.67	71.5	206.17	68.723
C_4	74.5	71.5	68.5	214.50	71.500
C_5	51.25	51.5	50.5	153.25	51.083
$S_3 C_1$	40.62	39.87	42.6	122.72	40.907
C_2	48.1	42.66	41.37	132.13	44.043
C_3	45.12	47.25	47.12	139.49	46.497
C_4	47.5	47.7	48.1	143.30	47.767
C_5	44.5	48.33	44.5	137.33	45.777

Total

Analysis of Variance

Source of	Degrees of	Sum of	mean of	Computed	TABU	LAR F_
Variation	Freedom	Squares	Squares	F	0.05	0.01
Factor A	2	1352.029	676.014	73.60**	3.32	5.59
Factor B	4	1833.406	458.352	49.90**	2.69	4.02
AB	8	951.595	111.949	12.95**	2.27	5.17
Error	30	275.543	9.185			
Total	44	4412.573				

^{** =} Highly Significant

Coefficient of variation= 5.93%

Appendix Table 5. Flower diameter (cm)

	REPLICATION				
TREATMENT	I	II	III	TOTAL	MEAN
$S_1 C_1$	14	13.5	16	43.50	14.500
C_2	15.1	16.83	14.25	46.18	15.393
C_3	17.66	16	18	51.66	17.220
C_4	18.33	16	18.5	52.83	17.610
C_5	17.67	17.5	15.33	50.50	16.833
S_2C_1	20.13	20	19.38	59.51	19.837
C_2	21.5	22.67	22.17	66.34	22.113
C_3	22.65	22.83	22.5	67.98	22.660
C_4	23.75	22.5	23.5	69.75	23.250
C_5	21.25	21.62	22	64.87	21.623
$S_3 C_1$	17.75	16.12	132	50.47	16.823
C_2	18.7	19	125.4	56.01	18.670
C_3	18.88	19.25	122.4	56.13	18.710
C_4	18.31	17	125.6	54.71	18.237
C_5	18.63	17.17	124.5	54.27	18.090

Analysis of Variance

Source of	Degrees of	Sum of	mean of	Computed	TABUL	AR F_
Variation	Freedom	Squares	Squares	F	0.05	0.01
Factor A	2	243.930	121.965	143.52**	3.32	5.59
Factor B	4	39.560	9.890	11.64**	4.69	4.02
AB	8	8.540	1.067	1.26ns	2.27	5.17
Error	30	25.494	0.850			
Total	44	317.523				

** = Highly Significant

Coefficient of variation= 4.91%

Ns = Not Significant

Appendix Table 6. Stem diameter (cm)

	REPLICATION				
TREATMENT	I	II	III	TOTAL	MEAN
$S_1 C_1$.60	.45	.60	1.65	0.550
C_2	.66	.70	.94	2.30	0.767
C_3	.73	.50	.70	1.93	0.643
C_4	.90	.70	.85	2.45	0.817
C_5	.83	1.0	.70	2.53	0.843
$S_2 C_1$.64	1.20	1.05	2.89	0.963
C_2	1.50	1.47	1.40	4.37	1.457
C_3	1.40	1.33	1.30	4.03	1.343
C_4	1.35	1.30	1.15	3.80	1.267
C_5	.70	.90	the 1.1 popular	2.70	0.900
$S_3 C_1$.875	1.10	1.08	3.06	1.020
C_2	1.20	.97	.92	3.09	1.030
C_3	1.01	1.15	1.15	3.31	1.103
C_4	1.20	1.28	1.42	3.90	1.300
C_5	1.20	1.10	1.30	3.60	1.200

Total

Analysis of Variance

Source of	Degrees of	Sum of	mean of	Computed	TABU1	LAR F_
Variation	Freedom	Squares	Squares	F	0.05	0.01
Factor A	2	1.909	0.955	50.12**	3.32	5.59
Factor B	4	0.432	0.108	5.67**	4.69	4.02
AB	8	0.630	0.079	4.13*	2.27	5.17
Error	30	0.571	0.019			
Total	44	3.543				

^{** =} Highly Significant

Coefficient of variation= 13.62%

^{* =} Significant

Appendix Table 7. Number of lateral stems

		REPLICATION			
TREATMENT	I	II	III	TOTAL	MEAN
$S_1 C_1$	3	2	3	8	2.667
C_2	4	3	3	10	3.333
C_3	3	2	4	9	3.000
C_4	2	4	3	9	3.000
C_5	3	3	3	9	3.000
$S_2 C_1$	1	2	2	5	1.667
C_2	2	2	2	6	2.000
C_3	3	2	3	8	2.667
C_4	2	3	3	8	2.667
C_5	1	3	2 Solution	6	2.000
S_3C_1	1	3	3	7	2.333
C_2	2	2	3	7	2.333
C_3	3	2	2	7	2.333
C_4	3	3	4	10	3.333
C_5	2	2	3	7	2.333

Total

Analysis of Variance

Source of	Degrees of	Sum of	mean of	Computed	TABU	LAR F_
Variation	Freedom	Squares	Squares	F	0.05	0.01
Factor A	2	4.844	2.422	4.95*	3.32	5.59
Factor B	4	2.978	0.744	1.52ns	4.69	4.02
AB	8	2.489	0.311	0.64ns	2.27	5.17
Error	30	14.667	0.489			
Total	44	24.978				

^{* =} Significant

Coefficient of variation= 27.12%

Ns = Not Significant

