## BIBLIOGRAPHY

BADIVAL, JELYN S. OCTOBER 2008. Effect of Osmocote 15-9-12 on the Growth, Flowering and Yield of Anthurium cv. Kansako. Benguet State University, La Trinidad, Benguet.

Adviser: Dr. Araceli G. Ladilad,PhD.


#### Abstract

The study was conducted at the Benguet State University Ornamental Horticulture Research Area from December, 2007 to April, 2008 to evaluate the effects of osmocote 15-9-12 controlled release fertilizer on the vegetative, reproductive growth, yield of anthurium; to compare the effects of osmocote 15-9-12 with the recommended practice of fertilizer application in relation to the growth, flowering and yield of anthurium; and to determine the economics of applying osmocote 15-9-12 in anthurium cutflower production.

Results revealed that vegetative growth was significantly enhanced with the application of osmocote 15-9-12 + recommended rate of 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water applied 1 cup/ plant/ week which produced taller plants with longer stems that were thicker and produced more leaves. Earlier flowering was noted in treatments applied with osmocote 15-9-12 at a higher rate of $15 \mathrm{~g} /$ pot + recommended rate. This treatment also promoted the production of highest yield and highest ROI compared to plants applied with the lower rates of osmocote $15-9-12$ at $5 \mathrm{~g} /$ pot and 10 g / pot either applied alone or in combination with the recommended rate.


Based on the above findings, osmocote 15-9-12 + the recommended rate is recommended for anthurium cutflower production to improve the vegetative growth, enhanced flowering and for the production of higher volume of cutflowers and highest ROI which lead to increased farm income.

## TABLE OF CONTENTS

Page
Bibliography. ..... i
Abstract ..... i
Acknowledgement ..... iii
INTRODUCTION
Nature of the study ..... 1
Objectives of the Study ..... 2
Place and Time of Study ..... 2
REVIEW OF LITERATURE
The Plant ..... 3
Growing Medium ..... 3
Effect of Fertilizer on Plant Growth ..... 4
Effect of Slow Release Fertilizer ..... 4
MATERIALS AND METHODS ..... 6
RESULTS AND DISCUSSION
Initial height ..... 9
Final height ..... 9
Initial number of leaves per plant ..... 10
Number of leaves at per plant at flowering ..... 10
Initial stem thickness ..... 12
Stem thickness at flowering ..... 13
Number of days from harvesting of the first flower to formation of the second flower ..... 13
Number of days from visible flower bud formation to harvesting stage. ..... 14
Length of spathe. ..... 16
Width of spathe. ..... 17
Cutflower stem length. ..... 18
Small sized cutflowers ..... 19
Medium sized cutflowers. ..... 20
Large sized cutflowers. ..... 21
Costs and return analysis ..... 22
SUMMARY, CONCLUSION AND RECOMMENDATION ..... 28
LITERATURE CITED. ..... 30
APPENDICES ..... 32

## INTRODUCTION

## Nature of the Study

Osmocote is composed of granules of dry plant nutrients, which had been encapsulated within multiple layers of polymeric resin. Water vapor penetrates the permeable shell and dissolves the nutrient care. The resulting osmotic pressure within the granule meters the liquid nutrients through the coating and into the surrounding soil/media. The granule increase in size and an osmotic pressure is formed. The dissolved nutrients gradually diffuse through the membrane coating into the soil. This process continues until all nutrients in the granules had been dissolved; in this way; continues supply of daily portion of the plant nutrients is available for plant use.

Osmocote 15-9-12 has total nitrogen composed of 7\% ammoniacal nitrogen and 8\% nitrate nitrogen to make it $15 \%$ nitrogen. Product longevity is 5-6 months under 70 F average media temperature. This product is suitable for perennial flowering plants such as anthuriums and is excellent for hanging plant basket.

Controlled release fertilizers like Osmocote 15-9-12 has several advantages: (1) they are safe and reliable, such that there is no burning effects when used in the recommended rate; (2) provide uniform and well balanced crop development since they provide daily nutrient for the crop: (3) there is continues supply of nutrients: (4) there is minimal leaching of nutrients: (5) nutrients are made available to targeted plants and not the weeds: (6) easy to apply and application is once 3-4 months up to 9-10 months period depending on the product formulation; and (7) saves on labor, transport and storage. Controlled release fertilizers has been proven effective in several crops based on studies conducted.

Anthurium is an exotic tropical cutflower crop that can be grown anywhere in the country in areas with an average night temperature of $18^{\circ} \mathrm{C}$ and day temperature of $28^{\circ} \mathrm{C}$. It is a shade plant and grows favorably in 60 to $70 \%$ light level. Since the root system of this crop is fleshly, application of fertilizer is in liquid form to prevent injury to the plant. Weekly application of 1 tbsp urea + quick release 14-14-14 fertilizer is usually done for improved growth and cutflower yield.

## Objectives of the study

The study was conducted to:

1. To evaluate the effects of osmocote 15-9-12 controlled release fertilizer on the vegetative growth, reproductive growth and yield of anthurium.
2. To compare the effects of osmocote 15-9-12 with the recommended practice of fertilizer application in relation to the growth, flowering and yield of anthurium.
3. To determine the economics of applying osmocote 15-9-12 in anthurium cutflower production.

Place and time of study
The study was conducted at the Ornamental Horticulture Research Area, Benguet State University, La Trinidad, Benguet from December, 2007 to April 2008.

## REVIEW OF LITERATURE

## The Plant

Anthurium belongs to the family Aracea and originated from South America. The color ranges from white, pink, orange, coral, obake to red of different shades. Anthuriums are very attractive exotic cutflowers most especially the spathe, which is a modified leaf and varies in color, size, shape, and the prominence of veins.

There are two types of anthurium species under cultivation: the foliage and the flowering type. The foliage type has very inconspicuous and decidedly unattractive flowers and is grown from their handsome and velvety leaves. Anthuriums are not endemic here in the Philippines and all cultivars of Anthurium andreanum Linn. Grown locally are inductions from other countries. Other types of anthuriums grown by enthusiasts include the obake types, which extremely vary in sizes, and shapes of the spathe. Some obake types are all green. Others have white and green combinations or red pink or orange and green spathe.

## Growing Medium

Anthuriums grow best in a well-aerated medium with high organic matter content. It should have good water retention capacity and at the same time produce enough drainage. It must be able to anchor the roots and stem firmly so that the plant will be dislodged or easily recline as it grows or when it is subjected to strong winds and rain (Rosario, 1991).

## Effect of Fertilizer on Plant Growth

Fertilizer is one of the most important ingredients of the total recipe to grow plants. Plants do need water, air, light, nutrition, soil and temperature all in right ratio at the right moment and all right period (Scotts, 1996).

Rosario stated that both organic and inorganic fertilizers are used by our local anthurium growers. The amount depends on the medium used, light conditions and cultivar.

Complete fertilizers carry nutrient elements such as nitrogen, phosphorus and potassium which plants need for optimum growth and development (Gardner, 1949).

Buyao (1994) reported that basal application of $\mathrm{N}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{K}_{2} \mathrm{O}$ was needed in promoting the growth of leaves and stem of plants.

## Effect of Slow Release Fertilizer

French and Alsburg (1989) stated that the major advantage of slow release fertilizer is that a single application can provide the majority of the nutrients for the growing season. Following the necessary method of application, production of superior quality plants can be obtained.

Slow release fertilizers are widely used in foliage industries since they supply adequate amounts of nutrient for extended periods of time (3-12 months) especially on slow growing plants. Slow release fertilizer releases nutrients slowly but a portion is available immediately therefore, good quality plants can be obtained when properly applied. However, it causes damage when excess amount is applied (Joiner, 1982).

Darwin (2004) stated that application of osmocote 15-9-12 enhanced earlier number of days from flower bud formation to harvesting at $50 \%$ anthesis on aster. He recommended slow release fertilizer at the rate of $80 \mathrm{~g} / \mathrm{m}^{2}$ osmocote should be applied to
improve the vegetative and reproductive growth and increase cutflower yield of the three aster varieties grown.

Lacay (2004) recommended 40 g osmocote plus +800 g chicken manure and stated that it is the best fertilizer treatment for rose cutflower production due to lesser labor in fertilizer application and lower cost of production giving a ROI of 70\%.

Slow release fertilizer at the rate of $30 \mathrm{~g} /$ pot osmocote $14-14-14$ should be applied to improve the vegetative and reproductive growth of the African violets cvs. Ginger and Lady Pink grown in 1:1:1 alnus leaves compost, compost rice hull and garden soil is recommended (Estong.2005).

## MATERIALS AND METHODS

## Materials

The materials used were established three year old flowering anthurium plants cv. Kansako, growing media, pesticides, Osmocote 15-9-12 controlled release fertilizer, 14-1414, urea, black plastic net house, labels, weighing scale, farm tools.

## Methods

The study was arranged in RCBD experimental design with three replications per treatment.

All recommended production management operation practices like weeding, crop protection sprays, irrigation and growing media was applied uniformly to all crops to ensure good growth of the plants and production of quality cutflowers.

The treatments were as follows:
$\mathrm{T}_{1}$ - no fertilizer (control)
$\mathrm{T}_{2}$ - Osmocote 15-9-12 at $5 \mathrm{~g} /$ pot
$\mathrm{T}_{3}$ - Osmocote 15-9-12 at $10 \mathrm{~g} /$ pot
$\mathrm{T}_{4}$ - Osmocote 15-9-12 at $15 \mathrm{~g} /$ pot
$\mathrm{T}_{5}-1$ tbsp 14-14-14 + 1 tbsp 45-0-0/5 gal water applied 1 cup/plant/week (Recommended rate)
$\mathrm{T}_{6}$-1tbsp 14-14-14 +1 tbsp 45-0-0/5 gal water applied 1 cup/plant/week + Osmocote 15-9-12 at $5 \mathrm{~g} /$ pot
$\mathrm{T}_{7}-1$ tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water applied 1 cup/ plant/ week + Osmocote 15-9-12 at $10 \mathrm{~g} /$ pot
$\mathrm{T}_{8}$-1 tbsp 14-14-14 + 1 tbsp45-0-0/ 5 gal water applied 1 cup/plant/week

+ Osmocote 15-9-12 at $15 \mathrm{~g} /$ pot


## Data Gathered

A. Vegetative growth

1. Initial height. This was measured in cm after application of slow-release fertilizers.
2. Final height at harvesting stage ( $3 / 4$ maturity) in cm . The plant height was measured at harvesting stage.
3. Initial number of leaves per plant. This was counted after application of slowrelease fertilizers.
4. Number of leaves per plant at flowering. The number of leaves pre plant was counted at flowering stage.
5. Initial stem thickness. This was measured in cm after application of slow- release fertilizers.
6. Stem thickness at flowering (cm). This was obtained by measuring the diameter of stem at $3 / 4$ maturity of flowers.
B. Reproductive growth
7. Number of days from harvesting of the first flower to flower bud formation of the second flower ( 1 cm bud size). The number of days from harvesting of the first flower to flower bud formation of the second flower was recorded.
8. Number of days from visible flower bud formation to harvesting stage (3/4 maturity). The number of days from flower bud formation to harvesting stage was recorded.

## C. Cutflower Yield

1. Volume of cutflowers harvested per plant for 4 months duration will be recorded.
2. Volume of cutflowers harvested per treatment for 4 months duration was recorded.

## D. Cutflower Quality

1. Flower size. The length and width of spathes of harvested flowers was measured in cm .
2. Cutflower stem length at harvest (cm). The length of the stem from the base of the plant to the flower tip was measured.
E. Cost and Return Analysis. All inputs that were used in the study were recorded and the return on investment was computed using the formula:

$$
\text { ROI }(\%)=\underline{\text { Gross sale }- \text { Total expenses } \quad x 100}
$$

Total expenses
G. Documentation of study through pictures.

## RESULTS AND DISCUSSION

## Initial Height

Table 1 shows highly significant differences were noted on the initial height of the anthurium plants measured after the application of Osmocote 15-9-12.

## Final Height at Harvesting Stage (3/4 maturity)

Highly significant differences were likewise obtained on the final height of anthurium plants at flowering as affected by the different fertilizer treatments. As shown on Table 1, plants applied with 15 g osmocote 15-9-12/ pot + the recommended rate of 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water at 1 cup/ plant/ week were the tallest with a mean of 96.33 cm . However, it was comparable statistically with plants applied with osmocote 15-$9-12$ at $10 \mathrm{~g} /$ pot +1 tbsp $14-14-14+1$ tbsp $45-0-0 / 5$ gal water at 1 cup/ plant/ week showing a mean of 85.67 cm at flowering; while the control were the shortest with a mean of 57.33 cm .

The above results confirm with the earliest statement of Martin and Leonard (1970) that plants grown with sufficient amounts of nitrogen in the soil makes the plant thrifty and rapid in growth.

Day-a (1999) found that application of $75-75-75$ or $100-100-100 \mathrm{~kg}$ NPK/ ha improves plant height, increase number of leaves, affects the production of longer flower stems, bigger blossoms and higher number of suckers per plant and increase yield of cutflower in Benguet Lily.

Table 1. Initial height and final height at harvesting stage (cm)

| TREATMENTS | INITIAL <br> HEIGHT | FINAL <br> HEIGHT |
| :--- | :---: | :---: |
|  | MEAN <br> $(\mathrm{cm})$ | MEAN <br> $(\mathrm{cm})$ |
| $0-0-0$ (control) | 54.00 c | 57.33 c |
| Osmocote 15-9-12 at 5g/ pot | 54.33 c | 59.00 c |
| Osmocote 15-9-12 at 10g/ pot | 71.67 b | 77.00 b |
| Osmocote 15-9-12 at 15g/ pot | 71.00 b | 77.67 b |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ | 67.33 b | 73.33 b |
| 1 cup/ plant/ week (Recommended Rate) | 69.67 b | 75.00 b |
| Recommended rate + 5g osmocote 15-9-12/ pot | 79.67 b | 85.67 ab |
| Recommended rate + 10g osmocote $15-9-12 /$ pot | 92.00 a | 96.33 a |
| Recommended rate + 15g osmocote $15-9-12 /$ pot |  |  |

Means with a common letter are not significantly different at 5\% by DMRT

Gardner (1949) stated that complete fertilizers carry nitrogen, phosphorus and potassium which plants need for optimum growth and development.

## Initial Number of Leaves per Plant

Initial number of leaves were significantly differences as shown in Table 2.

## Number of Leaves per Plant at Flowering

The number of leaves at flowering is presented in Table 2. Result showed significant differences on the number of leaves at flowering due to the fertilizer applied.

Osmocote $15-9-12$ at $15 \mathrm{~g} /$ pot + the recommended rate produce more leaves per plant at flowering stage with a mean of 6.33 leaves per plant while the control produces only 3.33 leaves. Leaf count among the fertilized plants varies from 4.33 to 6.00 leaves per plant four months after fertilizer application.

This result complements the claims of Mendiola (1976) that nitrogen, when applied to plants at certain period of their growth cease to produce new branches and leaves or to increase those already formed.

Table 2. Initial number of leaves per plant and number of leaves per plant at flowering

|  |  | INITIAL |
| :--- | :--- | :---: |
| TREATMENTS | LEAVES | FINAL |
| LEAVES |  |  |

Means with a common letter are not significantly different at 5\% by DMRT

## Initial stem thickness (cm)

Table 3 shows that there was significantly difference on the initial stem thickness of the anthurium plants measured after the application of slow release fertilizer.

Table 3. Initial stem thickness and final stem thickness at flowering (cm)

|  | INITIAL STEM THICKNESS | FINAL STEM THICKNESS |
| :---: | :---: | :---: |
| TREATMENTS |  |  |
|  | $\begin{aligned} & \text { MEAN } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$ | MEAN <br> (cm) |
| 0-0-0 (control) | 1.10b | 1.13c |
| Osmocote 15-9-12 at 5g/ pot | 1.11b | 1.29 bc |
| Osmocote 15-9-12 at $10 \mathrm{~g} /$ pot | 1.57a | 1.63ab |
| Osmocote 15-9-12 at $15 \mathrm{~g} /$ pot | 1.63a | 1.69ab |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week (Recommended rate) | 1.60a | 1.63ab |
| Recommended rate +5 g osmocote 15-9-12/ pot | 1.62a | 1.67ab |
| Recommended rate +10 g osmocote 15-9-12/ pot | 1.76a | 1.85a |
| Recommended rate +15 g osmocote 15-9-12/ pot | 1.95a | 2.05a |

Means with a common letter are not significantly different at 5\% by DMRT

## Stem Thickness at Flowering (cm)

The effect of the fertilizer applied with regards to the stem thickness at flowering is shown in Table 3. Application of 15 g osmocote $15-9-12$ / pot + the recommended rate produced significantly the thickest stem at flowering which had a mean of 2.05 cm . This was followed by the plants applied with 10 g osmocote $15-9-12$ / pot + the recommended
rate with a mean of 1.85 cm . Thinnest stem was measured from the control with a mean of 1.13 cm at flowering.

Number of Days from Harvesting of the First Flower to Flower Bud Formation of the Second Flower

Results obtained were significantly different with regards to the number of days from last harvesting to the formation to the next flower based on 1 cm bud size as shown in Table 4. It was noted that the recommended rate +15 g osmocote $15-9-12$ / pot was the earliest to initiate flower buds after the last harvest. This was followed by 15 g osmocote 15-9-12/ pot with a mean of 10.86 days.

Furthermore, it was noted that control were late flowering at 22.67 days from last harvest. On the other hand, it is statistically comparable to all other treatments with means ranging from 12.68 to 17.03 days.

Bautista et.al (1989) stated that each plant or variety has different genetic make-up that affects the earliness and regularity of flowering.

Mendiola (1958) stated that nitrogen promotes the growth of sexual buds and flowers.

Table 4. Number of days from harvesting of the first flower to flower bud formation of the second flower

| TREATMENTS | MEAN <br> (days) |
| :--- | :--- |
| $0-0-0$ (control) | 22.67 a |
| Osmocote 15-9-12 at $5 \mathrm{~g} /$ pot | 14.61 ab |
| Osmocote 15-9-12 at $10 \mathrm{~g} /$ pot | 14.25 ab |
| Osmocote 15-9-12 at $15 \mathrm{~g} /$ pot | 10.86 b |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week |  |
| $\quad$(Recommended rate) | 15.89 ab |
| Recommended rate +5 g osmocote $15-9-12 /$ pot | 12.68 ab |
| Recommended rate +10 g osmocote $15-9-12 /$ pot | 17.03 ab |
| Recommended rate +15 g osmocote $15-9-12 /$ pot | 9.56 b |

Means with a common letter are not significantly different at 5\% by DMRT

Number of Days from Visible Flower Bud Formation to Harvesting Stage

Significant differences were observed on the number of days from visible flower bud formation to harvesting stage as shown in Table 5. Osmocote 15-9-12 at $15 \mathrm{~g} /$ pot were the earliest to form flower bud and mature with a mean of 58.67 days. However, it is comparable to plants applied with 10 g osmocote/ pot + the recommended rate and recommended rate of 1 tbsp 14-14-14 + 1 tbsp 45-0-0/5 gal water/ 1 cup/ plant/ week having a mean of 63.00 days and 64.67 days, respectively. The control was the latest to form flower bud and mature with a mean of 89.33 days.

Bautista et.al (1983) mentioned that each variety/ plant contains a set of genetic make-up which determines earliness of bearing and maturity.

Hartman and Kester (1975) reported that during the juvenile phase, the mature plants begin flowering by responding to various flower induction stimuli. These may be environmental signals, such as photoperiod (either long or short days) or temperature regimes (cool or warm).

Darwin (2004) stated that application of osmocote 15-9-12 enhanced earlier number of days from flower bud formation to harvesting stage at $50 \%$ anthesis on aster.

Table 5. Number of days from visible flower bud to harvesting stage (3/4) maturity)

| TREATMENTS | MEAN <br> (days) |
| :---: | :---: |
| 0-0-0 (control) | 89.33a |
| Osmocote 15-9-12 at 5g/ pot | 86.67a |
| Osmocote 15-9-12 at $10 \mathrm{~g} / \mathrm{pot}$ | 79.67b |
| Osmocote 15-9-12 at $15 \mathrm{~g} /$ pot | 69.33cd |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week (Recommended rate) | 64.67de |
| Recommended rate +5 g osmocote 15-9-12/ pot | 73.67bc |
| Recommended rate +10 g osmocote 15-9-12/ pot | 63.00de |
| Recommended rate +15 g osmocote 15-9-12/ pot | 58.67e |

Means with a common letter are not significantly different at 5\% by DMRT

## Length of Spathe

Length of spathe is presented in Table 6. Statistical analysis showed significantly differences on the length of spathe as affected by fertilizer application. 15 g osmocote 15-912/ pot + the recommended rate had the longest spathe but it is comparable to all fertilized plants having a mean of 13.53 to 15.53 cm , showing slight differences only. The control were the shortest having a mean of 10.17 cm .

Results reveal that flower size was likewise affected by the rates of osmocote 15-912 applied alone or in combination with the recommended rate. These findings show the direct influence of plant nutrition on both vegetative and reproductive growth of plants.

Table 6. Length of spathe (cm)

| TREATMENTS | $\begin{gathered} \text { MEAN } \\ \text { (cm) } \end{gathered}$ |
| :---: | :---: |
| 0-0-0 (control) | 10.17b |
| Osmocote 15-9-12 at 5g/ pot | 13.33a |
| Osmocote 15-9-12 at 10 g / pot | 15.43a |
| Osmocote 15-9-12 at 15g/ pot | 15.50a |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plan/ week (Recommended rate) | 15.17a |
| Recommended rate +5 g osmocot 15-9-12/ pot | 15.33a |
| Recommended rate +10 g osmocote $15-9-12$ / pot | 15.33a |
| Recommended rate +15 g osmocote 15-9-12/ pot | 15.53a |

Means with a common letter are not significantly different at 5\% by DMRT

## Width of Spathe

Result show that there were no significantly differences from the fertilized plants ranging a mean of 10.47 to 12.73 cm . Although, plants applied with 15 g osmocote 15-9-12/ pot show the widest spathe with a mean of 12.73 cm followed by plants applied osmocote 15-9-12 at 15 g / pot + recommended rate. The control plants had the narrower spathe with a mean of 6.83 cm .

Table 7. Width of spathe (cm)

| TREATMENTS | $\begin{array}{r} \text { MEAN } \\ (\mathrm{cm}) \\ \hline \end{array}$ |
| :---: | :---: |
| 0-0-0 (control) | 6.83b |
| Osmocote 15-9-12 at 5g/ pot | 10.47a |
| Osmocote 15-9-12 at 10g/ pot | 11.43a |
| Osmocote 15-9-12 at $15 \mathrm{~g} /$ pot | 12.73a |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week (Recommended rate) | 12.17a |
| Recommended rate +5 g osmocote 15-9-12/ pot | 11.80a |
| Recommended rate +10 g osmocote $15-9-12$ / pot | 12.07a |
| Recommended rate +15 g osmocote 15-9-12/ pot | 12.67a |

Means with a common letter are not significantly different at 5\% by DMRT

## Cutflower Stem Length

Table 8 presents the cutflower stem length of anthurium flowers. Statistical analysis showed no significant differences on the stem length of anthurium flowers at harvest. Although, among the fertilized plants, those applied with 15 g osmocote $15-9-12 /$ pot + recommended rate had the longest cutflower stems measuring 65.00 cm . All other fertilized plants had longer stems ranging from52.33 cm to 64.33 cm , compared to control having a mean of 46.00 cm .

Mendiola (1976) said that application of proper amount of nitrogen in plants encourage stem development.

Table 8. Cutflower stem length (cm)

| TREATMENTS | MEAN <br> $(\mathrm{cm})$ |
| :--- | :---: |
| No fertilizer (control) | 46.00 a |
| Osmocote 15-9-12 at 5g/ pot | 53.67 a |
| Osmocote 15-9-12 at 10g/ pot | 56.33 a |
| Osmocote 15-9-12 at 15g/ pot | 64.00 a |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/5 gal water/ 1 cup/ plant/ week |  |
| Recommended rate) | 52.33 a |
| Recommended rate + 10g osmocote 15-9-12/ pot | 64.33 a |
| Recommended rate + 15g osmocote 15-9-12/ pot | 64.33 a |

[^0]Sotero (2004) found that 60 g osmocote 18-6-12 significantly promoted vegetative growths with longest stem cutflower of the Lily of the Nile.

## Small Sized Cutflowers

Table 9 shows that there were significant effects of the fertilizer applied with regards to the cutflower yield particularly on small sized cutflowers. Osmocote 15-9-12 at $15 \mathrm{~g} /$ pot + the recommended rate has the highest small sized cutflowers produced with a mean of 19.33 followed by 15 g osmocote $15-9-12$ / pot alone with 17.33 . The control produced 9.33 small sized cutflowers.

Table 9. Small sized cutflowers

| TREATMENTS | MEAN |
| :--- | :--- |
| $0-0-0$ (control) | 9.33 b |
| Osmocote $15-9-12$ at $5 \mathrm{~g} /$ pot |  |
| Osmocote 15-9-12 at $10 \mathrm{~g} /$ pot |  |
| Osmocote $15-9-12$ at $15 \mathrm{~g} /$ pot | 10.00 b |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week | 12.67 ab |
| (Recommended rate) | 17.33 a |
| Recommended rate +5 g osmocote $15-9-12 /$ pot | 12.67 ab |
| Recommended rate +10 g osmocote $15-9-12 /$ pot | 14.00 ab |
| Recommended rate +15 g osmocote $15-9-12 /$ pot | 16.00 ab |

Means with a common letter are not significantly different at 5\% by DMRT

## Medium Sized Cutflower

Significantly more medium sized flowers were harvested when applied with 15 g osmocote 15-9-12/ pot + recommended rate with a mean of 14.00 flowers. However, it was statistically comparable with the flower production of plants applied with 15 g osmocote 15-9-12/ pot alone with a mean of 11.33 flowers.

The least number of flowers were produced by the recommended rate with a mean of 6.00 medium flowers. However, it was statistically comparable with the control and 5 g osmocote 15-912/ pot alone having a mean of 6.67 and 7.33 flowers, respectively

Table 10. Medium sized cutflowers

| TREATMENTS | MEAN |
| :---: | :---: |
| 0-0-0 (control) | 6.67cd |
| Osmocote 15-9-12 at 5g/ pot | 7.33cd |
| Osmocote 15-9-12 at 10g/ pot | 10.00bc |
| Osmocote 15-9-12 at 15g/ pot | 11.33ab |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ I cup/ plant/ week (Recommended rate) | 6.00d |
| Recommended rate +5 g osmocote 15-9-12/ pot | 7.33cd |
| Recommended rate +10 g osmocote 15-9-12/ pot | 8.67bcd |
| Recommended rate +15 g osmocote 15-9-12/ pot | 14.00a |

Means with a common letter are not significantly different at 5\% by DMRT

## Large Sized Cutflowers

Table 11 shows that anthurium plants applied with osmocote $15-9-12$ at $5 \mathrm{~g} /$ pot + recommended rate had the highest large cutflowers with a mean of 6.67 flowers. Nevertheless, it was statistically comparable with the plants applied with 10 g osmocote 15 -$9-12$ / pot + recommended rate and in 15 g osmocote $15-9-12$ / pot alone with means of 6.00 and 5.33 flowers.

The least number of large cutflowers were obtained from the control and 5 g osmocote 15-9-12/ pot alone with a mean of 2.00 flowers.

Table 11. Large sized cutflowers

| TREATMENTS | MEAN |
| :---: | :---: |
| 0-0-0 (control) | 2.00c |
| Osmocote 15-9-12 at 5g/ pot | 2.00c |
| Osmocote 15-9-12 at 10g/ pot | 2.67c |
| Osmocote 15-9-12 at 15g/ pot | 5.33ab |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week (Recommended rate) | 3.33bc |
| Recommended rate +5 g osmocote 15-9-12/ pot | 2.67bc |
| Recommended rate +10 g osmocote $15-9-12 /$ pot | 6.00a |
| Recommended rate +15 g osmocote 15-9-12/ pot | 6.67a |

Table 12. Cost and return analysis

| TREATMENTS | CUTFLOW ERS PROD UCED | GROSS <br> INCOM <br> E | $\begin{aligned} & \text { COST OF } \\ & \text { PRODUCT } \\ & \text { ION } \end{aligned}$ | NET INCOM E | ROI | RANK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-0-0 (control) | 181 | 1,032 | 824 | 208 | 25.24 | 3 |
| $5 \mathrm{~g} /$ pot osmocote 15-9-12 | 194 | 1,104 | 1,204 | -100 | -8.3 | 8 |
| $10 \mathrm{~g} /$ pot osmocote 15-9-12 | 254 | 1,451 | 1,384 | 67 | 4.84 | 6 |
| 15 g / pot osmocote 15-9-12 | 332 | 1,926 | 1,564 | 362 | 23.15 | 4 |
| 1 tbsp 14-14-14 + 1 tbsp 45-0-0/5 gal water; 1 cup/plant/week (recommended rate) |  |  |  |  |  |  |
|  | 221 | 1,267 | 1,004 | 263 | 26.19 | 2 |
| Recommended rate <br> $+5 \mathrm{~g} /$ pot osmocote 15-9-12 |  |  | -10 |  |  |  |
|  | 241 | 1,360 | 1,384 | -24 | -1.73 | 7 |
| Recommended rate $+10 \mathrm{~g} /$ pot osmocote 15-9-12 |  |  |  |  |  |  |
|  | 307 | 1,802 | 1,564 | 238 | 15.22 | 5 |
| Recommended rate $+15 \mathrm{~g} /$ pot osmocote 15-9-12 |  |  |  |  |  |  |
|  | 401 | 2,346 | 1,744 | 602 | 34.52 | 1 |

## Cost and Return Analysis

In the cost and return analysis, highest ROI of $34.52 \%$ was obtained with the application of $15 \mathrm{~g} /$ pot osmocote $15-9-12+$ recommended rate of 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ plant/ week as shown in table 12.


Plate 1. Overview of the study


Plate 2. 0-0-0 (control)


Plate 3. 5g osmocote 15-9-12/ pot


Plate 4. 10 g osmocote $15-9-12$ / pot


Plate 5.15 g osmocote $15-9-12$ / pot


Plate 6. 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week (recommended Rate)


Plate 7. Recommended rate +5 g osmocote 15-9-12/ pot


Plate 8. Recommended rate +10 g osmocote $15-9-12$ / pot


Effect Of Osmocote 15-9-12 On The Growth, Flowering And Yield Of Anthurium Cv. Kansako / Jelyn S. Badival. 2008


## SUMMARY, CONCLUSION, RECOMMENDATION

## Summary

The study was conducted to evaluate the effects of osmocote 15-9-12 controlled release fertilizer on the vegetative, reproductive growth, yield of anthurium; to compare the effects of osmocote 15-9-12 with the recommended practice of fertilizer application in relation to the growth, flowering and yield of anthurium; and to determine the economics of applying osmocote 15-9-12 in anthurium cutflower production. The study was conducted at Ornamental Horticulture Research Area, Benguet State University, La Trinidad, Benguet from December, 2007 to April, 2008.

Result show that the tallest plants at harvesting stage were measured from those applied with the rate of osmocote $15-9-12$ at 15 g / pot + the recommended rate of 1 tbsp 14-14-14 + 1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week followed by those applied with the lower rate of 10 g osmocote $15-9-12$ / pot + the recommended rate.

Number of leaves per plant was higher in all fertilized plants compared to the untreated plants (control), although differences were statistically comparable.

Days to flower bud formation were statistically different in all treatments. Earliest to form and mature flower bud obtained on plants applied with osmocote $15-9-12$ at 15 g / pot + recommended rate. As to number of days from harvesting of the first flower to formation of the second flower, osmocote 15-9-12 at higher rate of $15 \mathrm{~g} /$ pot were earliest to form flower bud at 1 cm bud size. However, all treatments are statistically comparable.

Cutflower stem length at harvesting stage were not statistically different in all treatments. However, longer cutflower stem were harvested from palnts applied with 15 g osmocote 15-9-12/ pot + recommended rate with a mean of 65.00 cm .

Longest spathe length were obtained from 15 g osmocote $15-9-12 /$ pot + recommended rate having a mean of 15.53 cm . The control had the shortest spathe with a mean of 10.17 m . Widest spathe were recorded on plants applied with fertilizer compared to the control.

On the other hand, the number of cutflower produced was higher with the application of higher rates of fertilizer. Result shows that the plants applied with 15 g osmocote $15-9-12 /$ pot + recommended rate produced the highest number of cutflowers harvested for the cropping period.

## Conclusion

Based on the above findings, it is concluded that application of 15 g osmocote 15-912/ pot +1 tbsp 14-14-14 +1 tbsp 45-0-0/ 5 gal water at 1 cup/ plant/ week significantly improved the vegetative growth, enhanced flowering, highest yield with higher number of large sized cutflowers and highest ROI.

## Recommendation

Based from the preceeding results and discussion, application of osmocote 15-9-12 as a slow release fertilizer at the rate of15g/ pot +1 tbsp 14-14-14 +1 tbsp 45-0-0/ 5 gal water/ 1 cup/ plant/ week is recommended in growing anthurium cv. Kansako cutflower production to improve the vegetative growth, enhanced flowering, highest yield and highest ROI.

## LITERATURE CITED

BAUTISTA, O.K., H.V. Valmayor, P.C. Tabora, R.R. Espino, J.B. Sangalang.1983. Introduction to Tropical Horticulture. UPLB, Los Banos, Laguna.p 231.

BUYAO,M.C.1994. Integrated Use of Organic and Inorganic Nitrogen Fertilizer for the Cultivition of White Potato. BS Thesis. Benguet State University, La Trinidad, Benguet. P. 3

CARO, J.M. 1998. Response of Four Anthrium Cultivars to Different Formulations of Slow Release Fertilizer Osmocote and Multicote.BS Thesis. Benguet State University, La Trinidad, Benguet. Pp. 1-4 and 7-8

DARWIN, A.D. 2004. Growth, Flowering and Yield of Aster as Affected by Different Rates of Slow Release Fertilizers. BS Thesis. Benguet State University, La Trinidad, Benguet. P.28-29

DAY-A, J.M. 1999. Growth, Flowering and Yield of Chrysanthemum as Affected by Slow Release Fertilizer. BS Thesis. BSU, La Trinidad, Benguet. P.9.

DONGAEL, J.M. 1999. Growth,Flowering and Flower Quality on Anthurium as Affected by Different Foliar Fertilizers. BS Thesis. Benguet State University, La Trinidad, Benguet. Pp 1-8-9

ESTONG, G.M. 2005. Growth, Flowering of African violet as Affected by Different Rates of Slow Release Fertilizer. BS Thesis. Benguet State University, La Trinidad, Benguet. P. 16

FRENCH, L.B. and R.L. Alsburg. 1989. Comparison of Controlled Fertilizer for the Production of Rheodendron ‘Anna Rare Whitney’ HortSci 15:91-31

GARDNER, J.R. 1949. Basic Hoticulture. New York: The McMillan Book Co. p. 146
JOINER,J. 1982. Foliage Plant Production. New Jersey. Pentrice Hall. P164
LACAY, F.C. 2004. Growth, Flowering and Yield of Rose (Queen Elizabeth) as Affected by Osmocote plus Controlled Release Fertilizer (15-9-12). BS Thesis. Benguet State University, La Trinidad, Benguet,p 21.

LUBIANO, J.S. 200. Identification and Characterization of Abnormalities in Anthurium Flowers in La Trinidad, Benguet. BS Thesis. Benguet State University, La Trinidad, Benguet,p 1-4.

MARTIN,L. 1980. Plant Growth and Development. $2^{\text {nd }}$ ed. New Delhi. Tata McMillan Publishing Co. p. 425

MENDIOLA, N.B. 1958. Effects of Nitrogen and Plant Density on Field and Quality of Cabbage. MS Thesis \{Unpub.\}. Laguna, University of the Philippine College of Agriculture, Los Banos, Laguna

MENDIOLA, N.B. 1976. Principles of Crop Production in Southeast Asia. Caloocan City: United Circ. Inc. p. 71

RIMANDO, T.J. 2001. Ornamental Horticulture: A Little Giant in the Tropics. UPLB, Los Banos, Laguna

SCOTTS, C. 1996. Growing Medium and Fertilization Regime Influence Growth and Essential Oil Content of Rosemary. HortSci 26:91

SOTERO,A.Y. 2004. Growth,Flowering, and Yield of Lily of the Nile \{Agapanthus albus\} as Affected by Slow Release Fertilizer Applications. BS Thesis. BSU, La Trinidad, Benguet. p. 8
TIAGO, Y.C. 2004. Growth, Flowering and Yield of Anthurium 'Kansako' as Affected by Agroblen Controlled Release Fertilizer. BS Thesis. Benguet State University, La Trinidad, Benguet.

## APPENDICES

APPENDIX TABLE 1. Initial height (cm)

| TREATMENTS | REPLICATION |  |  | TOTAL | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 44 | 57 | 61 | 162 | 54.00 |
| $\mathrm{~T}_{2}$ | 52 | 61 | 50 | 163 | 54.33 |
| $\mathrm{~T}_{3}$ | 60 | 50 | 77 | 215 | 71.67 |
| $\mathrm{~T}_{4}$ | 61 | 76 | 76 | 213 | 71.00 |
| $\mathrm{~T}_{5}$ | 60 | 73 | 69 | 202 | 67.33 |
| $\mathrm{~T}_{6}$ | 76 | 67 | 66 | 209 | 69.67 |
| $\mathrm{~T}_{7}$ | 83 | 86 | 70 | 239 | 79.67 |
| $\mathrm{~T}_{8}$ | 90 | 101 | 85 | 276 | 92.00 |

ANALYSIS OF VARIANCE

| SOURCE | DEGREES | SUM OF | MEAN | F | TABULATED F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF <br> VARIANCE | OF <br> FREEDOM | SQUARES | SQUARE | VALUE | 0.05 | 0.01 |
| Replication | 2 | 339.083 | 169.542 |  |  |  |
| Factor A | 7 | 3269.625 | 467.089 | 9.76* | 2.77 | 4.58 |
| Error | 14 | 670.250 | 47.875 |  |  |  |
| Total | 23 | 4278.958 |  |  |  |  |

*- Significant
Coefficient of Variation: 9.89\%

APPENDIX TABLE 2. Final height at harvesting stage (cm)

| TREATMENTS | REPLICATION |  |  | TOTAL | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 46 | 60 | 66 | 172 | 57.33 |
| $\mathrm{~T}_{2}$ | 55 | 66 | 56 | 177 | 59.00 |
| $\mathrm{~T}_{3}$ | 71 | 80 | 80 | 231 | 77.00 |
| $\mathrm{~T}_{4}$ | 74 | 79 | 80 | 233 | 77.67 |
| $\mathrm{~T}_{5}$ | 69 | 76 | 75 | 220 | 73.33 |
| $\mathrm{~T}_{6}$ | 83 | 72 | 70 | 225 | 75.00 |
| $\mathrm{~T}_{7}$ | 90 | 91 | 76 | 257 | 85.67 |
| $\mathrm{~T}_{8}$ | 96 | 105 | 88 | 289 | 96.33 |

ANALYSIS OF VARIANCE

| SOURCE |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| OF |  |
| VARIANCE | DEGREES |
| OFEEDOM |  |$\quad$| SUM OF | SQUARES | SQUARE | F | VALUE |
| :---: | :---: | :---: | :---: | :---: | TABULATED F

**-Highly significant Coefficient of Variation: 8.89\%

| TREATMENT | REPLICATION |  |  | TOTAL | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 3 | 4 | 3 | 10 | 3.33 |
| $\mathrm{T}_{2}$ | 4 | 5 | 4 | 13 | 4.33 |
| $\mathrm{T}_{3}$ | 5 | 5 | 4 | 14 | 4.67 |
| $\mathrm{T}_{4}$ | 5 | 7 | 5 | 17 | 5.67 |
| $\mathrm{T}_{5}$ | 5 | 5 | 7 | 17 | 5.67 |
| $\mathrm{T}_{6}$ | 7 | 5 | 5 | 17 | 5.67 |
| $\mathrm{T}_{7}$ | 6 | 7 | 5 | 18 | 6.00 |
| $\mathrm{T}_{8}$ | 7 | 6 | 6 | 19 | 6.33 |

## ANALYSIS OF VARIANCE



APPENDIX TABLE 4. Number of leaves per plant at harvesting stage

| TREATMENTS | REPLICATION |  |  | TOTAL | MEAN |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 3 | 4 | 3 | 10 | 3.33 |
| $\mathrm{~T}_{2}$ | 4 | 5 | 4 | 13 | 4.33 |
| $\mathrm{~T}_{3}$ | 5 | 5 | 4 | 14 | 4.67 |
| $\mathrm{~T}_{4}$ | 5 | 7 | 5 | 17 | 5.67 |
| $\mathrm{~T}_{5}$ | 5 | 5 | 7 | 17 | 5.67 |
| $\mathrm{~T}_{6}$ | 7 | 5 | 5 | 17 | 5.67 |
| $\mathrm{~T}_{7}$ | 6 | 7 | 5 | 18 | 6.00 |
| $\mathrm{~T}_{8}$ | 7 | 6 | 6 | 19 | 6.33 |

ANALYSIS OF VARIANCE

| SOURCE | DEGREES | SUM OF | MEAN | $\begin{gathered} \hline \mathrm{F} \\ \text { VALUE } \end{gathered}$ | TABULATED F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF | OF | SQUARES | SQUARE |  |  |  |
| VARIANCE | FREEDOM |  |  |  | 0.05 | 0.01 |
| Replication | 2 | 1.583 | 0.792 |  |  |  |
| Factor A | 7 | 21.292 | 3.042 | 3.84* | 2.77 | 4.58 |
| Error | 14 | 11.083 | 0.792 |  |  |  |
| Total | 23 | 33.958 |  |  |  |  |

APPENDIX TABLE 5. Initial stem thickness (cm)

| TREATMENTS | REPLICATION |  |  | TOTAL | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 1.0 | 1.19 | 1.10 | 3.29 | 1.097 |
| $\mathrm{~T}_{2}$ | 1.0 | 1.0 | 1.35 | 3.35 | 1.117 |
| $\mathrm{~T}_{3}$ | 1.64 | 1.68 | 1.38 | 4.7 | 1.567 |
| $\mathrm{~T}_{4}$ | 1.60 | 1.57 | 1.73 | 4.9 | 1.633 |
| $\mathrm{~T}_{5}$ | 1.71 | 1.73 | 1.36 | 4.8 | 1.6 |
| $\mathrm{~T}_{6}$ | 1.68 | 1.70 | 1.48 | 4.86 | 1.62 |
| $\mathrm{~T}_{7}$ | 1.78 | 1.98 | 1.53 | 5.29 | 1.763 |
| $\mathrm{~T}_{8}$ | 1.83 | 1.71 | 2.31 | 5.85 | 1.95 |

ANALYSIS OF VARIANCE


APPENDIX TABLE 6. Stem thickness at flowering (cm)

| TREATMENTS | REPLICATION |  |  |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 1.0 | 1.25 | 1.13 | 3.38 | 1.127 |
| $\mathrm{~T}_{2}$ | 1.5 | 1.0 | 1.38 | 3.88 | 1.193 |
| $\mathrm{~T}_{3}$ | 1.75 | 1.75 | 1.40 | 4.9 | 1.633 |
| $\mathrm{~T}_{4}$ | 1.63 | 1.63 | 1.80 | 5.06 | 1.687 |
| $\mathrm{~T}_{5}$ | 1.75 | 1.75 | 1.40 | 4.9 | 1.633 |
| $\mathrm{~T}_{6}$ | 1.75 | 1.75 | 1.50 | 5.0 | 1.667 |
| $\mathrm{~T}_{7}$ | 2.0 | 2.1 | 1.55 | 5.65 | 1.883 |
| $\mathrm{~T}_{8}$ | 2.0 | 1.75 | 2.40 | 6.15 | 2.05 |

ANALYSIS OF VARIANCE

| SOURCE | DEGREES | SUM OF | MEAN | F | TABULATED F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF | OF | SQUARES | SQUARE | VALUE |  |  |
| VARIANCE | FREEDOM |  |  |  | 0.05 | 0.01 |
| Replication | 2 | 0.043 | 0.021 |  |  |  |
| Factor A | 7 | 1.784 | 0.255 | 5.11** | 2.77 | 4.58 |
| Error | 14 | 0.699 | 0.050 |  |  |  |
| Total | 23 | 2.526 |  |  |  |  |

APPENDIX TABLE 7. Number of days from harvesting of the $1^{\text {st }}$ flower to formation of the $2^{\text {nd }}$

| TREATMENTS | REPLICATION |  |  |  | TOTAL |
| :---: | ---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 44 | 57 | 61 | 162 | 54.00 |
| $\mathrm{~T}_{2}$ | 1.5 | 1.0 | 1.38 | 3.88 | 1.193 |
| $\mathrm{~T}_{3}$ | 1.75 | 1.75 | 1.40 | 4.9 | 1.633 |
| $\mathrm{~T}_{4}$ | 1.63 | 1.63 | 1.80 | 5.06 | 1.687 |
| $\mathrm{~T}_{5}$ | 1.75 | 1.75 | 1.40 | 4.9 | 1.633 |
| $\mathrm{~T}_{6}$ | 1.75 | 1.75 | 1.50 | 5.0 | 1.667 |
| $\mathrm{~T}_{7}$ | 2.0 | 2.1 | 1.55 | 5.65 | 1.883 |
| $\mathrm{~T}_{8}$ | 2.0 | 1.75 | 2.40 | 6.15 | 2.05 |

## ANALYSIS OF VARIANCE

| SOURCE | DEGREES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| OF |  |
| OF |  | | SUM OF | MEAN | F | TABULATED F |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VARIANCE | FREEDOM |  |  |  |  |
| SQUARE | VALUE | 0.05 | 0.01 |  |  |
| Replication | 2 | 0.043 | 0.021 |  |  |
|  |  |  |  |  |  |
| Factor A | 7 | 1.784 | 0.255 | $5.11^{* *}$ | 2.77 |
| Error | 14 | 0.699 | 0.050 |  |  |
| Total | 23 | 2.526 |  |  |  |

APPENDIX TABLE 8. Number of days from visible flower bud formation to harvesting Stage

| TREATMENTS | REPLICATION |  |  | TOTAL | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 90 | 90 | 88 | 268 | 89.333 |
| $\mathrm{~T}_{2}$ | 83 | 90 | 87 | 260 | 86.667 |
| $\mathrm{~T}_{3}$ | 79 | 75 | 85 | 239 | 79.667 |
| $\mathrm{~T}_{4}$ | 69 | 64 | 75 | 208 | 69.333 |
| $\mathrm{~T}_{5}$ | 67 | 63 | 64 | 194 | 64.667 |
| $\mathrm{~T}_{6}$ | 73 | 69 | 79 | 221 | 73.667 |
| $\mathrm{~T}_{7}$ | 63 | 64 | 62 | 189 | 63.000 |
| $\mathrm{~T}_{8}$ | 52 | 58 | 66 | 176 | 58.667 |

## ANALYSIS OF VARIANCE

| SOURCE | DEGREES |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| OF | OF | SUM OF | MEAN | F | TABULATED F |  |
| VARIANCE | FREEDOM |  |  |  |  | 0.05 |
| Replication | 2 | 83.250 | 41.625 |  |  | 0.01 |
| Factor A | 7 | 2659.958 | 379.994 | $24.69 * *$ | 2.77 | 4.58 |
| Error | 14 | 215.417 | 15.387 |  |  |  |
| Total | 23 | 2958.625 |  |  |  |  |
| **-Highly significant |  |  |  |  |  |  |


| APPENDIX TABLE 9. Length of spathe (cm) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TREATMENTS |  | REPLICATION |  | TOTAL |  |  |  |
|  | I | II | III |  |  |  |  |
| $\mathrm{T}_{1}$ | 10.5 | 11.5 | 8.5 | 30.5 |  |  |  |
| $\mathrm{~T}_{2}$ | 15.2 | 12.3 | 12.5 | 40.0 |  |  |  |
| $\mathrm{~T}_{3}$ | 14.0 | 16.0 | 16.3 | 46.3 |  |  |  |
| $\mathrm{~T}_{4}$ | 16.0 | 16.5 | 14.0 | 46.5 |  |  |  |
| $\mathrm{~T}_{5}$ | 14.0 | 14.0 | 15.0 | 43.0 |  |  |  |
| $\mathrm{~T}_{6}$ | 14.3 | 15.2 | 16.0 | 45.5 |  |  |  |
| $\mathrm{~T}_{7}$ | 15.0 | 15.0 | 16.0 | 46.0 |  |  |  |
| $\mathrm{~T}_{8}$ | 14.5 | 15.6 | 16.5 | 46.0 |  |  |  |

## ANALYSIS OF VARIANCE



## ANALYSIS OF VARIANCE

| SOURCE | DEGREES | SUM OF | MEAN | F | TABULATED F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF | OF | SQUARES | SQUARE | VALUE |  |  |
| VARIANCE | FREEDOM |  |  |  | 0.05 | 0.01 |
| Replication | 2 | 4.381 | 2.190 |  |  |  |
| Factor A | 7 | 78.503 | 11.215 | 8.38** | 2.77 | 4.58 |
| Error | 14 | 18.726 | 1.338 |  |  |  |
| Total | 23 | 101.610 |  |  |  |  |

Coefficient of Variation: 10.26\%

APPENDIX TABLE 11. Cutflower stem length at harvesting stage (cm)

| TREATMENTS |  |  | REPLICATION | TOTAL | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 50 | 46 | 42 | 138 | 46.00 |
| $\mathrm{~T}_{2}$ | 50 | 61 | 50 | 161 | 53.67 |
| $\mathrm{~T}_{3}$ | 58 | 57 | 54 | 169 | 56.33 |
| $\mathrm{~T}_{4}$ | 67 | 58 | 67 | 192 | 64.00 |
| $\mathrm{~T}_{5}$ | 64 | 67 | 56 | 187 | 62.33 |
| $\mathrm{~T}_{6}$ | 73 | 64 | 56 | 193 | 64.33 |
| $\mathrm{~T}_{7}$ | 72 | 65 | 56 | 193 | 64.33 |
| $\mathrm{~T}_{8}$ | 68 | 71 | 56 | 195 | 65.00 |

ANALYSIS OF VARIANCE

| SOURCE | DEGREES | SUM OF | MEAN | F | TABULATED F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF | OF | SQUARES | SQUARE | VALUE |  |  |
| VARIANCE | FREEDOM |  |  |  | 0.05 | 0.01 |
| Replication | 2 | 175.750 | 87.875 |  |  |  |
| Factor A | 7 | 1087.167 | 155.310 | 2.26ns | 2.77 | 4.58 |
| Error | 14 | 963.583 | 68.827 |  |  |  |
| Total | 23 | 2226.500 |  |  |  |  |
| Ns-not signifi |  |  | Coe | ficient of V | Variation: | 4.24\% |


| APPENDIX TABLE 12. Small sized cutflowers |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TREATMENTS |  | REPLICATION | TOTAL | MEAN |  |  |  |  |
|  | I | II | III |  |  |  |  |  |
| $\mathrm{T}_{1}$ | 6 | 12 | 10 | 28 | 9.33 |  |  |  |
| $\mathrm{~T}_{2}$ | 10 | 12 | 8 | 30 | 10.00 |  |  |  |
| $\mathrm{~T}_{3}$ | 14 | 12 | 12 | 38 | 12.67 |  |  |  |
| $\mathrm{~T}_{4}$ | 22 | 14 | 16 | 52 | 17.33 |  |  |  |
| $\mathrm{~T}_{5}$ | 10 | 16 | 12 | 38 | 12.67 |  |  |  |
| $\mathrm{~T}_{6}$ | 14 | 10 | 18 | 42 | 14.00 |  |  |  |
| $\mathrm{~T}_{7}$ | 19 | 15 | 14 | 48 | 16.00 |  |  |  |
| $\mathrm{~T}_{8}$ | 22 | 22 | 14 | 58 | 19.33 |  |  |  |

## ANALYSIS OF VARIANCE

| SOURCE | DEGREES | SUM OF | MEAN | F | TABULATED F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF | OF | SQUARES | SQUARE | VALUE |  |  |
| VARIANCE | FREEDOM |  |  |  | 0.05 | 0.01 |
| Replication | 2 | 11.083 | 5.542 |  |  |  |
| Factor A | 7 | 254.500 | 36.357 | 3.18* | 2.77 | 4.58 |
| Error | 14 | 160.250 | 11.446 |  |  |  |
| Total | 23 | 425.833 |  |  |  |  |
| *-Significant |  |  |  | ficient of | Variation | 4.31\% |

APPENDIX TABLE 13. Medium sized cutflowers

| TREATMENTS |  | REPLICATION | TOTAL | MEAN |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 4 | 8 | 8 | 20 | 6.67 |
| $\mathrm{~T}_{2}$ | 7 | 8 | 7 | 22 | 7.33 |
| $\mathrm{~T}_{3}$ | 12 | 10 | 8 | 30 | 10.00 |
| $\mathrm{~T}_{4}$ | 12 | 10 | 12 | 34 | 11.33 |
| $\mathrm{~T}_{5}$ | 6 | 5 | 7 | 18 | 6.00 |
| $\mathrm{~T}_{6}$ | 8 | 8 | 6 | 22 | 7.33 |
| $\mathrm{~T}_{7}$ | 12 | 8 | 6 | 26 | 8.67 |
| $\mathrm{~T}_{8}$ | 12 | 14 | 16 | 42 | 14.00 |

ANALYSIS OF VARIANCE

| SOURCE | DEGREES | SUM OF | MEAN | F | TABULATED F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF | OF | SQUARES | SQUARE | VALUE |  |  |
| VARIANCE | FREEDOM |  |  |  | 0.05 | 0.01 |
| Replication | 2 | 0.583 | 0.292 |  |  |  |
| Factor A | 7 | 154.500 | 22.071 | 5.86** | 2.77 | 4.58 |
| Error | 14 | 52.750 | 3.768 |  |  |  |
| Total | 23 | 207.833 |  |  |  |  |

APPENDIX TABLE 14. Large sized cutflowers

| TREATMENTS |  | REPLICATION | TOTAL | MEAN |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |  |  |
| $\mathrm{T}_{1}$ | 2 | 2 | 2 | 6 | 2.00 |
| $\mathrm{~T}_{2}$ | 2 | 2 | 2 | 6 | 2.00 |
| $\mathrm{~T}_{3}$ | 2 | 2 | 4 | 8 | 2.67 |
| $\mathrm{~T}_{4}$ | 4 | 6 | 6 | 16 | 5.33 |
| $\mathrm{~T}_{5}$ | 2 | 6 | 2 | 10 | 3.33 |
| $\mathrm{~T}_{6}$ | 2 | 4 | 2 | 8 | 2.67 |
| $\mathrm{~T}_{7}$ | 6 | 6 | 6 | 18 | 6.00 |
| $\mathrm{~T}_{8}$ | 8 | 4 | 8 | 20 | 6.67 |

ANALYSIS OF VARIANCE

| $\begin{gathered} \text { SOURCE } \\ \text { OF } \\ \text { VARIANCE } \end{gathered}$ | $\begin{aligned} & \text { DEGREES } \\ & \text { OF } \\ & \text { FREEDOM } \end{aligned}$ | SUM OF SQUARES | $\begin{aligned} & \text { MEAN } \\ & \text { SQUARE } \end{aligned}$ | $\begin{gathered} \text { F } \\ \text { VALUE } \end{gathered}$ | TABULATED F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  | 0.05 | 0.01 |
| Replication | 2 | 1.333 | 0.667 |  |  |  |
| Factor A | 7 | 74.000 | 10.571 | 5.29** | 2.77 | 4.58 |
| Error | 14 | 28.000 | 2.000 |  |  |  |
| Total | 23 | 103.333 |  |  |  |  |




[^0]:    Means with a common letter are not significantly different at 5\% by DMRT

